Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Open Access
See all formats and pricing
More options …

Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

Oliver Waser
  • Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Brenner
  • Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arto J. Groehn
  • Department of Chemical and Biological Engineering, University of Colorado, Boulder, 80309 CO, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sotiris E. Pratsinis
  • Corresponding author
  • Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/cpe-2017-0005


Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li4Ti5O12 (LTO) particle compositions are made and characterized by N2 adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO4 and ZrO2.

Keywords: Li-ion battery; Li4Ti5O12; size control; residence time distribution; computational fluid dynamics; flame synthesis of electroceramics


  • Armand M., Tarascon J.M., 2008. Building better batteries. Nature, 451, 652-657. DOI: 10.1038/451652a.CrossrefGoogle Scholar

  • Asbrink S., Norrby L.J., 1970. A refinement of crystal structure of copper(2) oxide with a discussion of some exceptional E.s.d.'s. Acta Crystall. B-Stru., B 26, 8-15. DOI: 10.1107/S0567740870001838.Google Scholar

  • Athanassiou E.K., Grass R.N., Stark W.J., 2006. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 17, 1668-1673. DOI: 10.1088/0957-4484/17/6/022.CrossrefGoogle Scholar

  • Birozzi A., Copley M., von Zamory J., Pasqualini M., Calcaterra S., Nobili F., Di Cicco A. Rajantie H., Briceno M., Bilbé E., Cabo-Fernandez L., Hardwick L.J., Bresser D. Passerini St., 2015. Scaling up "nano" Li4Ti5O12 for high-power lithium-ion anodes using large flame spray pyrolysis. J. Electrochem. Soc., 162, A2331-A2338. DOI: 10.1149/2.0711512jes.CrossrefGoogle Scholar

  • Bresser D., Paillard E., Copley M., Bishop P., Winter M., Passerini S., 2012. The importance of "going nano" for high power battery materials. J. Power Sources, 219, 217-222. DOI: 10.1016/J.Jpowsour.2012.07.035.CrossrefGoogle Scholar

  • Curtet R., 1958. Confined jets and recirculation phenomena with cold air. Combust Flame, 2, 383-411. DOI: 10.1016/0010-2180(58)90032-4.CrossrefGoogle Scholar

  • Deschanvres A., Raveau B., Sekkal Z., 1971. Synthesis and crystallographic study of new solid solution of spinelle Li1+xTi2-xO4 less than or equal to x less than or equal to 0,333. Mater. Res. Bull., 6, 699-704. DOI: 10.1016/0025-5408(71)90103-6.CrossrefGoogle Scholar

  • Du Pasquier A., Huang C.C., Spitler T., 2009. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J. Power Sources, 186, 508-514. DOI: 10.1016/J.Jpowsour.2008.10.018.CrossrefGoogle Scholar

  • Ernst F.O., Kammler H.K., Roessler A., Pratsinis S.E., Stark W.J., Ufheil J., Novák P., 2007. Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater. Chem. Phys., 101, 372-378. DOI: 10.1016/j.matchemphys.2006.06.014.CrossrefGoogle Scholar

  • Ferg E., Gummow R.J., de Kock A., Thackeray M.M., 1994. Spinel anodes for lithium-ion batteries. J. Elchem Soc., 141, L147-L150. DOI: 10.1149/1.2059324.CrossrefGoogle Scholar

  • Gaberscek M., Dominko R., Jamnik J., 2007. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun., 9, 2778-2783. DOI: 10.1016/J.Elecom.2007.09.020.CrossrefGoogle Scholar

  • Gamba I.L., Damian S.M., Estenoz D.A., Nigro N., Storti M.A., Knoeppel D., 2012. Residence time distribution determination of a continuous stirred tank reactor using computational fluid dynamics and its application on the mathematical modeling of styrene polymerization. Int. J. Chem. React. Eng., 10, 1-32. DOI: 10.1515/1542-6580.3057.CrossrefGoogle Scholar

  • Groehn A.J., Pratsinis S.E., Sanchez-Ferrer A., Mezzenga R., Wegner K., 2014. Scale-up of nanoparticle synthesis by flame spray pyrolysis: The high-temperature particle residence time. Ind. Eng. Chem. Res., 53, 10734-10742. DOI: 10.1021/Ie501709s.CrossrefGoogle Scholar

  • Groehn A.J., Pratsinis S.E., Wegner K., 2012. Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2. Chem. Eng. J., 191, 491-502. DOI: 10.1016/J.Cej.2012.02.093.CrossrefGoogle Scholar

  • He Y.B., Li B., Liu M., Zhang C., Lv W., Yang C., Li J., Du H., Zhang B., Yang Q.H., Kim J.K., Kang F., 2012. Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2, 1-9. DOI: 10.1038/srep00913.CrossrefGoogle Scholar

  • Hsiao K.C., Liao S.C., Chen J.M., 2008. Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries. Electrochim. Acta, 53, 7242-7247. DOI: 10.1016/J.Electacta.2008.05.002.CrossrefGoogle Scholar

  • Hudak N.S., Huber D.L., 2012. Size effects in the electrochemical alloying and cycling of electrodeposited aluminum with lithium. J. Electrochem. Soc., 159, A688-A695. DOI: 10.1149/2.023206jes.CrossrefGoogle Scholar

  • Jiang J.W., Chen J., Dahn J.R., 2004. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry. J. Electrochem. Soc., 151, A2082-A2087. DOI: 10.1149/1.1817698.CrossrefGoogle Scholar

  • Johannessen T., Pratsinis S.E., Livbjerg H., 2000. Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chem. Eng. ci., 55, 177-191. DOI: 10.1016/S0009-2509(99)00183-9.CrossrefGoogle Scholar

  • Karhunen T., Lähde A., Leskinen J., Büchel R., Waser O., Tapper U., Jokiniemi J., 2011. Transition metal-doped lithium titanium oxide nanoparticles made using flame spray pyrolysis. ISRN Nanotechnology, 2011, 1-6. DOI: 10.5402/2011/180821.CrossrefGoogle Scholar

  • Kavan L., Prochazka J., Spitler T.M., Kalbac M., Zukalova M.T., Drezen T., Gratzel M., 2003. Li insertion into Li4Ti5O12 (Spinel) - Charge capability vs. particle size in thin-film electrodes. J. Electrochem. Soc., 150, A1000- A1007. DOI: 10.1149/1.1581262.CrossrefGoogle Scholar

  • Kho Y.K., Teoh W.Y., Madler L., Amal R., 2011. Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis. Chem. Eng. Sci., 66, 2409-2416. DOI: 10.1016/J.Ces.2011.02.058.CrossrefGoogle Scholar

  • Krumeich F., Waser O., Pratsinis S.E. 2016. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis. J. Solid State Chem. 242, 96-102. DOI: 10.1016/j.jssc.2016.07.002CrossrefGoogle Scholar

  • Laruelle S., Grugeon S., Poizot P., Dolle M., Dupont L., Tarascon J.M., 2002. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 149, A627-A634. DOI: 10.1149/1.1467947.CrossrefGoogle Scholar

  • Levenspiel O., 1999. Chemical reaction engineering. Wiley, New York.Google Scholar

  • Madler L., Kammler H.K., Mueller R., Pratsinis S.E., 2002. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci., 33, 369-389. DOI: 10.1016/S0021-8502(01)00159-8.CrossrefGoogle Scholar

  • Madler L., Stark W.J., Pratsinis S.E., 2002. Flame-made ceria nanoparticles. J. Mater. Res., 17, 1356-1362. DOI: 10.1557/jmr.2002.0202.CrossrefGoogle Scholar

  • Magnussen B.F., Hjertager B.H., 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. Int. Combust., 16, 719-729. DOI: 10.1016/S0082-0784(77)80366-4.CrossrefGoogle Scholar

  • Morrison P.W., Raghavan R., Timpone A.J., Artelt C.P., Pratsinis S.E., 1997. In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater., 9, 2702-2708. DOI: 10.1021/cm960508u.CrossrefGoogle Scholar

  • Mueller R., Kammler H.K., Pratsinis S.E., Vital A., Beaucage G., Burtscher P., 2004. Non-agglomerated dry silica nanoparticles. Powder Technol., 140, 40-48. DOI: 10.1016/J.Powtec.2004.01.004\.CrossrefGoogle Scholar

  • Mueller R., Madler L., Pratsinis S.E., 2003. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci., 58, 1969-1976. DOI: 10.1016/s0009-2509(03)00022-8CrossrefGoogle Scholar

  • Naoi K., Naoi W., Aoyagi S., Miyamoto J., Kamino T., 2013. New generation "nanohybrid supercapacitor". Accounts Chem. Res., 46, 1075-1083. DOI: 10.1021/Ar200308h.CrossrefGoogle Scholar

  • Nowack L.V., Waser O., Yarema O., Wood V., 2013. Rapid, microwave-assisted synthesis of battery-grade lithium titanate (LTO). RSC Adv., 3, 15618-15621. DOI: 10.1039/C3ra43237h.CrossrefGoogle Scholar

  • Ohzuku T., Ueda A., Yamamoto N., 1995. Zero-strain insertion material of Li[Li1/3ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc., 142, 1431-1435. DOI: 10.1149/1.2048592.CrossrefGoogle Scholar

  • Olfe D.B., 1961. Mean beam length calculations for radiation from non-transparent gases. J. Quant. Spectrosc. Ra., 1, 169-176. DOI: 10.1016/0022-4073(61)90022-X.CrossrefGoogle Scholar

  • Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 144, 1188-1194. DOI: 10.1149/1.1837571CrossrefGoogle Scholar

  • Poullikkas A., 2013. A comparative overview of large-scale battery systems for electricity storage. Renew. Sust. Energ. Rev., 27, 778-788. DOI: 10.1016/J.Rser.2013.07.017.CrossrefGoogle Scholar

  • Pratsinis S.E., 1998. Flame aerosol synthesis of ceramic powders. Prog. Energ. Combust., 24, 197-219. DOI: 10.1016/S0360-1285(97)00028-2.CrossrefGoogle Scholar

  • Rudin T., Wegner K., Pratsinis S.E., 2011. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. J. Nanopart. Res., 13, 2715-2725. DOI: 10.1007/s11051-010-0206-x.CrossrefGoogle Scholar

  • Sotiriou G.A., Sannomiya T., Teleki A., Krumeich F., Voros J., Pratsinis S.E., 2010. Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv. Funct. Mater., 20, 4250-4257. DOI: 10.1002/Adfm.201000985.CrossrefGoogle Scholar

  • Streltsov V.A., Belokoneva E.L., Tsirelson V.G., Hansen N. K., 1993. Multipole analysis of the electron-density in triphylite, LiFePO4, using X-ray-diffraction data. Acta Crystallogr. B, 49, 147-153. DOI: 10.1107/S0108768192004701.CrossrefGoogle Scholar

  • Strobel R., Pratsinis S.E., 2007. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem., 17, 4743-4756. DOI: 10.1039/b711652g.CrossrefGoogle Scholar

  • Strobel R., Pratsinis S.E., 2009. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol., 20, 190-194. DOI: 10.1016/j.apt.2008.08.002.CrossrefGoogle Scholar

  • Teleki A., Heine M.C., Krumeich F., Akhtar M.K., Pratsinis S.E., 2008. In situ coating of flame-made TiO2 particles with nanothin SiO2 films. Langmuir, 24, 12553-12558. DOI: 10.1021/La801630z. CrossrefGoogle Scholar

  • Teleki A., Pratsinis S.E., Kalyanasundaram K., Gouma P.I., 2006. Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuator B-Chem., 119, 683-690. DOI: 10.1016/j.snb.2006.01.027.CrossrefGoogle Scholar

  • Teoh W.Y., Amal R., Madler L., 2010. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324-1347. DOI: 10.1039/C0nr00017e.CrossrefGoogle Scholar

  • Vlad A., Singh N., Rolland J., Melinte S., Ajayan P.M., Gohy J.F., 2014. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep., 4, 1-7. DOI: 10.1038/Srep04315.CrossrefGoogle Scholar

  • Wagemaker M., van Eck E.R.H., Kentgens A.P.M., Mulder F.M., 2009. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B, 113, 224-230. DOI: 10.1021/Jp8073706.CrossrefGoogle Scholar

  • Waser O., Buchel R., Hintennach A., Novák P., Pratsinis S.E., 2011. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. J. Aerosol Sci., 42, 657-667. DOI: 10.1016/J.Jaerosci.2011.06.003.CrossrefGoogle Scholar

  • Waser O., Groehn A.J., Eggersdorfer M.L., Pratsinis S.E., 2014. Air entrainment during flame aerosol synthesis of nanoparticles. Aerosol Sci. Technol., 48, 1195-1206. DOI: 10.1080/02786826.2014.969800.CrossrefGoogle Scholar

  • Waser O., Hess M., Guntner A., Novák P., Pratsinis S.E., 2013. Size controlled CuO nanoparticles for Li-ion batteries. J. Power Sources, 241, 415-422. DOI: 10.1016/J.Jpowsour.2013.04.147.CrossrefGoogle Scholar

  • Wegner K., Pratsinis S.E., 2003. Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem. Eng. Sci., 58, 4581-4589. DOI: 10.1016/J.Ces.2003.07.010.CrossrefGoogle Scholar

  • Wegner K., Schimmoeller B., Thiebaut B., Fernandez C., Rao T.N., 2011. Pilot plants for industrial nanoparticle production by flame spray pyrolysis. Kona Powder Part J., 251-265. DOI: 10.14356/kona.2011025.Google Scholar

  • Whitney E., 1994. Ceramic cutting tools : materials, development, and performance. Noyes Publications, Park Ridge, New Jersey, USA.Google Scholar

  • Zheng H.H., Li J., Song X.Y., Liu G., Battaglia V.S., 2012. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim Acta, 71, 258-265. DOI: 10.1016/J.Electacta.2012.03.161. CrossrefGoogle Scholar

About the article

Received: 2016-10-04

Revised: 2017-02-18

Accepted: 2017-02-20

Published Online: 2017-04-28

Published in Print: 2017-03-01

Citation Information: Chemical and Process Engineering, Volume 38, Issue 1, Pages 51–66, ISSN (Online) 2300-1925, DOI: https://doi.org/10.1515/cpe-2017-0005.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Michael Gockeln, Suman Pokhrel, Florian Meierhofer, Jens Glenneberg, Marco Schowalter, Andreas Rosenauer, Udo Fritsching, Matthias Busse, Lutz Mädler, and Robert Kun
Journal of Power Sources, 2018, Volume 374, Page 97
Florian Meierhofer, Haipeng Li, Michael Gockeln, Robert Kun, Tim Grieb, Andreas Rosenauer, Udo Fritsching, Johannes Kiefer, Johannes Birkenstock, Lutz Mädler, and Suman Pokhrel
ACS Applied Materials & Interfaces, 2017

Comments (0)

Please log in or register to comment.
Log in