Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Open Access
See all formats and pricing
More options …

Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

Artur Kubiczek
  • Corresponding author
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Molecular Engineering, 90-924 Łódź, Wólczańska 213, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Władysław Kamiński
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Process Thermodynamics, 90-924 Łódź, Wólczańska 213, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/cpe-2017-0008


Room-temperature ionic liquids (RTILs) are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

Keywords: extraction; ionic liquids; butanol; liquid-liquid equilibrium; NRTL equation


  • Abdehagh N., Tezel F.H., Thibault J., 2014. Separation techniques in butanol production. Challenges and developments. Biomass Bioenerg., 60, 222-246. DOI: 10.1016/j.biombioe.2013.10.003.CrossrefGoogle Scholar

  • Adhami L., Griggs B., Himebrook P., Taconi K., 2009. Liquid-liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. J. Am. Oil Chem. Soc., 86 (11), 1123-1128. DOI: 10.1007/s11746-009-1447-7.CrossrefGoogle Scholar

  • Brennecke J.F., Maginn E.J., 2001. Ionic liquids. innovative fluids for chemical processing. AIChE Journal, 47, 2384-2389. DOI: 10.1002/aic.690471102.CrossrefGoogle Scholar

  • Cheruku S.K., Banerjee T., 2012. Liquid-liquid equilibrium data for 1-ethyl-3-methylimidazolium acetatethiophene- diesel compound. experiments and correlations. J. Solution Chem., 41, 898-913. DOI: 10.1007/s10953-012-9840-5.CrossrefGoogle Scholar

  • Davison B.H., Thompson J.E., 1993. Continuous direct solvent extraction of butanol in a fermenting fluidizedbed bioreactor with immobilized Clostridium acetobutylicum. Appl. Biochem. Biotechnol., 39-40, 415-426. DOI: 10.1007/BF02919007.CrossrefGoogle Scholar

  • Domańska U., Królikowski M., 2012. Extraction of butan-1-ol from water with ionic liquids at T = 308.15K. J. Chem. Thermodyn., 53, 108-113. DOI: 10.1016/j.jct.2012.04.017.Google Scholar

  • Domańska U., Lukoshko E.V., 2015. Separation of pyridine from heptane with tricyanomethanide-based ionic liquids. Fluid Phase Equilib., 395, 9-14. DOI: 10.1016/j.fluid.2015.03.027.CrossrefGoogle Scholar

  • Dürre P., 2007. Biobutanol. An attractive biofuel. Biotechnol. J., 2, 1525-1534. DOI: 10.1002/biot.200700168.CrossrefGoogle Scholar

  • Earle M.J., Seddon K.R., 2000. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 72, 1391-1398. DOI: 10.1351/pac200072071391.CrossrefGoogle Scholar

  • Evans P.J., Wang H.Y., 1988. Enhancement of butanol formation by clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl. Environ. Microbiol., 54 (7), 1662-1667.Google Scholar

  • Ezeji T.C., Qureshi N., Blaschek H.P., 2004. Butanol fermentation research. Upstream and downstream manipulations. Chem. Rec., 4, 305-314. DOI: 10.1002/tcr.20023.CrossrefGoogle Scholar

  • Ezeji T.C., Qureshi N., Blaschek H.P., 2007. Bioproduction of butanol from biomass. from genes to bioreactors. Curr. Opin. Biotech., 18, 220-227. DOI: 10.1016/j.copbio.2007.04.002.CrossrefGoogle Scholar

  • García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R.L., 2011. Challenges in biobutanol production. How to improve the efficiency? Renew. Sust. Energ. Rev., 15, 964-980. DOI: 10.1016/j.rser.2010.11.008.CrossrefGoogle Scholar

  • Garcia-Chavez L.Y., Garsia C.M., Schuur B., de Haan A.B., 2012. Biobutanol recovery using nonfluorinated task-specific ionic liquids. Ind. Eng. Chem. Res., 51, 8293-8301. DOI: 10.1021/ie201855h.CrossrefGoogle Scholar

  • Green E.M., 2011. Fermentative production of butanol - the industrial perspective. Curr. Opin. Biotech., 22, 337-343. DOI: 10.1016/j.copbio.2011.02.004.CrossrefGoogle Scholar

  • Ha S.H., Mai N.L., Koo Y.M., 2010. Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction. Process Biochem., 45, 1899-1903. DOI: 10.1016/j.procbio.2010.03.030.CrossrefGoogle Scholar

  • Haghnazarloo H., Lotfollahi M.N., Mahmoudi J., Asl A.H., 2013. Liquid-liquid equilibria for ternary systems of (ethylene glycol + toluene + heptane) at temperatures (303.15, 308.15, and 313.15) K and atmospheric pressure. Experimental results and correlation with UNIQUAC and NRTL models. J. Chem. Thermodyn., 60, 126-131. DOI: 10.1016/j.jct.2012.12.027.CrossrefGoogle Scholar

  • Haghtalab A., Paraj A., 2012. Computation of liquid-liquid equilibrium of organic-ionic liquid systems using NRTL, UNIQUAC and NRTL-NRF models. J. Mol. Liq., 171, 43-49. DOI: 10.1016/j.molliq.2012.04.008.CrossrefGoogle Scholar

  • Huang HJ, Ramaswamy S, Liu Y., 2014. Separation and purification of biobutanol during bioconversion of biomass. Sep. Purif. Technol., 132, 513-540. DOI: 10.1016/j.seppur.2014.06.013.CrossrefGoogle Scholar

  • Ishii S., Taya M., Kobayashi T., 1985. Production of butanol by Clostridium acetobutylicum in extractive fermentation system. J. Chem. Eng. Jpn., 18, 125-130. DOI: 10.1252/jcej.18.125.CrossrefGoogle Scholar

  • Ishizaki A., Michiwaki S., Crabbe E., Kobayashi G., Sonomoto K., Yoshino S., 1999. Extractive acetone-butanolethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J. Biosci. Bioeng., 87, 352-356. DOI: 10.1016/S1389-1723(99)80044-9.CrossrefGoogle Scholar

  • Ji X, Held C, Sadowski G., 2012. Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilib., 335, 64-73. DOI: 10.1016/j.fluid.2012.05.029.CrossrefGoogle Scholar

  • Johnson K.E., 2007. What's an ionic liquid? The Electrochemical Society Interface.Google Scholar

  • Jones D.T., Woods D.R., 1986. Acetone-butanol fermentation revisited. Microbiol. Rev., 50 (4), 484-524. PMCID. PMC373084.Google Scholar

  • Kamiński W., Górak A., Kubiczek A., 2014. Modeling of liquid-liquid equilibrium in the quinary system of water, acetone, n-butanol, ethanol, and ionic liquid. Fluid Phase Equilib., 384, 114-121. DOI: 10.1016/j.fluid.2014.10.017.CrossrefGoogle Scholar

  • Klähn M., Stüber C., Seduraman A., Wu P., 2010. What determines the miscibility of ionic liquids with water? Identification of the underlying factors to enable a straightforward prediction. J. Phys. Chem. B., 114 (8), 2856-2868. DOI: 10.1021/jp1000557. CrossrefGoogle Scholar

  • Kosmulski M., Gustafsson J., Rosenholm J.B., 2004. Thermal stability of low temperature ionic liquids revisted. Thermochim. Acta, 412, 47-53. DOI: 10.1016/j.tca.2003.08.022.CrossrefGoogle Scholar

  • Kraemer K., Harwardt A., Bronneberg R., Marquardt W., 2011. Separation of butanol from acetone-butanolethanol fermentation by a hybrid extraction-distillation process. Comput. Chem. Eng., 35 (5), 949-963. DOI: 10.1016/j.compchemeng.2011.01.028.CrossrefGoogle Scholar

  • Królikowski M., 2016. Liquid−liquid extraction of p-xylene from their mixtures with alkanes using 1-butyl-1- methylmorpholinium tricyanomethanide and 1-butyl-3-methylimidazolium tricyanomethanide ionic liquids. Fluid Phase Equilib., 412, 107-114. DOI: 10.1016/j.fluid.2015.12.032.Google Scholar

  • Kubiczek A., 2015. Investigation of the extraction equilibrium in the quinary system of water, acetone, butanol, ethanol and ionic liquid. PhD thesis, Lodz University of Technology, Poland.Google Scholar

  • Kubiczek A., Kamiński W., 2013. Mutual solubility of selected ionic liquids and water in five-component systems containing acetone, butanol and ethanol. Chemical Engineering and Equipment, 52 (4), 351-352 (in Polish).Google Scholar

  • Kubiczek A., Kamiński W., Górak A., 2016. Modeling of single- and multi-stage extraction in the system of water, acetone, butanol, ethanol and ionic liquid. Fluid Phase Equilib., 425, 365-373. DOI: 10.1016/j.fluid.2016.05.023.CrossrefGoogle Scholar

  • Kumar M., Gayen K., 2011. Developments in biobutanol production. New insights. Appl. Energy, 88, 1999-2012. DOI: 10.1016/j.apenergy.2010.12.055.CrossrefGoogle Scholar

  • Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S., 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng., 101, 209-228. DOI: 10.1002/bit.22003.CrossrefGoogle Scholar

  • Liu W., Zhang Z., Ri Y., Xu X., Wang Y., 2016. Liquid−liquid equilibria for ternary mixtures of water + 2- propanol + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids at 298.15K. Fluid Phase Equilib., 412, 205-210. DOI: 10.1016/j.fluid.2015.12.051.CrossrefGoogle Scholar

  • Liu Y., Xue H., 2012. OXO Market supply and demand forecast & investment economic analysis. Finance Research, 1 (2), 4-10.Google Scholar

  • Lütke-Eversloh T., Bahl H., 2011. Metabolic engineering of Clostridium acetobutylicum. recent advances to improve butanol production. Curr. Opin. Biotech., 22, 1-14. DOI: 10.1016/ j.copbio.2011.01.011.CrossrefGoogle Scholar

  • Marciniak A., Wlazło M., Gawkowska J., 2016. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}. J. Chem. Thermodyn., 94, 96-100. DOI: 10.1016/j.jct.2015.11.002.Google Scholar

  • Matsumura M., Kataoka H., Sueki M., Araki K., 1988. Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Engineering, 3, 93-100.CrossrefGoogle Scholar

  • Mohsen-Nia M., Nekoei E., Mohammad Doulabi F.S., 2008. Ternary (liquid + liquid) equilibria for mixtures of (methanol + aniline + n-octane or n-dodecane) at T=298.15 K. J. Chem. Thermodyn., 40, 330-333. DOI: 10.1016/j.jct.2007.05.018.CrossrefGoogle Scholar

  • Natalense J., Zouain D., 2013. Technology roadmapping for renewable fuels. case of biobutanol in Brazil. J. Technol. Manag. Innov., 8 (4), 143-152. DOI: 10.4067/S0718-27242013000500013.CrossrefGoogle Scholar

  • Ni Y., Sun Z., 2009. Recent progress on industrial fermentative production of acetone-butanolethanol by Clostridium acetobutylicum in China. Appl. Microbiol. Biotechnol., 83, 415-423. DOI: 10.1007/s00253-009-2003-y.CrossrefGoogle Scholar

  • Qureshi N., Blaschek H.P., 2001. ABE production from corn. a recent economic evaluation. J. Ind. Microbiol. Biotechnol., 27, 292-297. DOI: 10.1038/sj.jim.7000123.CrossrefGoogle Scholar

  • Qureshi N., Blaschek H.P., 2006. Butanol production from agricultural biomass. In K. Shetty, G. Paliyath, A. Pometto, R.E. Levin (Eds.), Food biotechnology. 2nd ed. (pp. 525-549). New York. CRC Press, Taylor & Francis.Google Scholar

  • Rabari D., Banerjee T., 2013. Butanol and n-propanol recovery using a low density phosphonium based ionic liquid at T = 298.15K and p = 1atm. Fluid Phase Equilib., 355, 26-33. DOI: 10.1016/j.fluid.2013.06.047.CrossrefGoogle Scholar

  • Ramey D.E., 2007. Butanol. The other alternative fuel. In Eaglesham A. and Hardy R.W.F. (Eds.), Agricultural Biofuels. Technology, Sustainability and Profitability. NABC Report 19 (pp. 137-147). Ithaca, NY. National Agricultural Biotechnology Council 2007.Google Scholar

  • Roffler S.R., Blanch H.W., Wilke C.R., 1988. In situ extractive fermentation of acetone and butanol. Biotechnol. Bioeng., 31 (2), 135-143. DOI: 10.1002/bit.260310207.CrossrefGoogle Scholar

  • Simoni L.D., Chapeaux A., Brennecke J.F., Stadtherr M.A., 2010. Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput. Chem. Eng., 34, 1406-1412. DOI: 10.1016/j.compchemeng.2010.02.020. CrossrefGoogle Scholar

  • Siwale L., Kristóf L., Torok A., Bereczky A., Mbarawa M., Penninger A., Kolesnikov A., 2013. Performance characteristics of n-butanol-diesel fuel blend fired in a turbo-charged compression ignition engine. J. Power Energy Eng., 1, 77-83. DOI: 10.4236/jpee.2013.15013.CrossrefGoogle Scholar

  • Sowmiah S., Srinivasadesikan V., Tseng M.C., Chu Y.H., 2009. On the chemical stabilities of ionic liquids. Molecules, 14, 3780-3813. DOI: 10.3390/molecules14093780.CrossrefGoogle Scholar

  • Stoffers M., Górak A., 2013. Continuous multi-stage extraction of n-butanol from aqueous solutions with 1-hexyl-3-methylimidazolium tetracyanoborate. Sep. Purif. Technol., 120, 415-422. DOI: 10.1016/j.seppur.2013.10.016.Google Scholar

  • Stoffers M, Heitmann S, Lutze P, Górak A., 2013. Integrated processing for the separation of biobutanol. Part A. experimental investigation and process modelling. Green Process. Synth., 101-120. DOI: 10.1515/gps-2013-0009.CrossrefGoogle Scholar

  • Vane LM. ,2008. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels, Bioprod. Biorefin., 2, 553-588. DOI: 10.1002/bbb.108.CrossrefGoogle Scholar

  • Wilkes J.S., Zaworotko M.J., 1992. Air and water stable 1-Ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 965-967. DOI: 10.1039/C39920000965.Google Scholar

  • Zhang W., Hou K., Mi G., Chen N., 2010. Liquid-liquid equilibria of the ternary system thiophene + octane + dimethyl sulfoxide at several temperatures. Appl. Biochem. Biotechnol., 160, 516-522. DOI: 10.1007/s12010-008-8382-1. CrossrefGoogle Scholar

About the article

Received: 2016-10-26

Revised: 2016-12-14

Accepted: 2016-12-20

Published Online: 2017-04-28

Published in Print: 2017-03-01

Citation Information: Chemical and Process Engineering, Volume 38, Issue 1, Pages 97–110, ISSN (Online) 2300-1925, DOI: https://doi.org/10.1515/cpe-2017-0008.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Guilin Wen, Xia Zhang, Xueli Geng, Yixin Ma, Jun Gao, Yinglong Wang, and Zhaoyou Zhu
Journal of Chemical & Engineering Data, 2017
Guilin Wen, Xicai Xu, Hui Jia, Xia Zhang, Xueli Geng, and Yinglong Wang
The Journal of Chemical Thermodynamics, 2017

Comments (0)

Please log in or register to comment.
Log in