Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Balkan Region Conference on Engineering and Business Education

1 Issue per year

Open Access
See all formats and pricing
More options …

Computational Techniques In Management Of Engineering And Business Institutions

Marius Cioca / Cosmin Cioranu / Daniela Gîfu
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/cplbu-2014-0082


This paper deals with computational techniques used in management engineering in order to support enterprise managers in the decision-making process. Thus, the paper presents an application, built with web technologies for extracting and interpreting information from various sources, enabling the user to analyze data both in text files and the data available on the Internet, results that greatly improves the decision-making process through an efficient and fast analysis of data which, due to large the volume growing exponentially can no longer be covered and analyzed “manually” by a human factor.

Key words:: computational techniques; management engineering; decision-making process


  • 1. Abu-Mostafa, Y. S. (2012). Learning From Data. Retrieved Juny 2, 2012, from Learning From Data: http://www.amlbook.com/slides/iTunesU_Lecture18_May_31.pdfGoogle Scholar

  • 2. Barbat, B. (2002). Sisteme inteligente orientate spre agent. Bucuresti: Editura Academiei Romane.Google Scholar

  • 3. Buraga S.C., Cioca M., Cioca A. (2007) “Grid-Based Decision Support System Used in Disaster Management” Studies in Informatics and Control, Vol. 6, no. 3Google Scholar

  • 4. Buraga S.C., Cioca M. (2004) “Using XML Technologies for Information Integration within an e-Enterprise” 7th International Conference on Development and Application Systems DAS, undere the care of IEEE Romanian Section, RomaniaGoogle Scholar

  • 5. Cioca M., Cioca L.I., Buraga S.C. (2007) “Spatial [Elements] decision support system used in disaster management” Digital EcoSystems and Technologies Conference, 2007. DEST'07. Inaugural IEEE-IES, pp. 607-612Google Scholar

  • 6. Cioca L.I., Cioca M. (2007) “Using distributed programming in production system management”, WSEAS Transactions on Information Science and Applications, Vol. 4, no. 2, pp. 303-308Google Scholar

  • 7. Cioca M., Cioca L.I., Buraga S.C. (2005) “Using Semantic Web Technologies to Improve the Design Process in the Context of Virtual Production Systems”, International Journal “WSEAS Transactions on Computers”, IEE INSPEC, no. 12Google Scholar

  • 8. Cioca M. (2003) “Application of Information Technologies and Communications in Mechanical Engineering: using Web Technologies, Internet and e-CASE Instruments” 3rd International Conference" Research and development in mechanical industryGoogle Scholar

  • 9. DMG. (2012). Data Mining Group. Retrieved February 3, 2012, from Data Mining Group: http://www.dmg.org/Google Scholar

  • 10. Draganescu, M. (2000, ianuarie-aprilie 1-2). Constiinta, frontiera a stiintei, frontiera a omenirii. Revista de filosofie, pp. 15-22.Google Scholar

  • 11. Dzitac, I. (2008). Inteligenta Articifiala. Arad: Editura Universitatii Aurel Vlaicu.Google Scholar

  • 12. Elfelly N., Dieulot J.-Y., Borne P. (2008). A Neural Approach of Multimodel Representation of Complex Processes. International Journal of Computers Communications & Control, 149-160.Google Scholar

  • 13. Filip, F. Gh. (2000). Decizie asistata de calculator. Concepte, metode si tehnici pentru deciziile centrate pe analiza datelor. Revista Informatica Economica, pp. 8-22.Google Scholar

  • 14. Google.com. (n.d.). Google chart Tools - Google Developers. Retrieved February 3, 2012, from https://developers.google.com/chart/Google Scholar

  • 15. Gorunescu, F. (2006). Data Mining Concepte, Modele si Tehnici. Cluj-Napoca: Editura Albastra.Google Scholar

  • 16. MathWorks, Naive Bayes. (2012). Naive Bayes classifier - MATLAB. Retrieved Juny 19, 2012, from http://www.mathworks.com/help/toolbox/stats/naivebayesclass.htmlGoogle Scholar

  • 17. MathWorks, Support Vector Machine. (2012). Train support vector machine classifier - MATLAB. Retrieved Juny 19, 2012, from http://www.mathworks.com/help/ toolbox/bioinfo/ref/svmtrain.htmlGoogle Scholar

  • 18. RACAI. (n.d.). Research Institute for Artificial Intelligence. Retrieved March 6, 2012, from Research Institute for Artificial Intelligence: http://www.racai.ro/ Home/tabid/36/Default.aspxGoogle Scholar

  • 19. Tufis, D., Cristea, D. & Stamou, S. (2004). BalkaNet: Aims, Methods, Results and Perspectives. A General Overview. ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 7 (1-2), 9-43.Google Scholar

  • 20. WordNet Search - 3.1. (n.d.). Retrieved October 15, 2011, from WordNet: http://wordnetweb.princeton.edu/perl/ webwn?s=data+mining&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=Google Scholar

About the article

Published Online: 2014-08-15

Citation Information: Balkan Region Conference on Engineering and Business Education, Volume 1, Issue 1, Pages 489–492, ISSN (Online) 1843-6730, DOI: https://doi.org/10.2478/cplbu-2014-0082.

Export Citation

© 2014 Quality Research Centre, Lucian Blaga University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in