Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Product and Process Modeling

Ed. by Sotudeh-Gharebagh, Rhamat / Mostoufi, Navid / Chaouki, Jamal

4 Issues per year


CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.347

Online
ISSN
1934-2659
See all formats and pricing
More options …

Few-Step Kinetic Model of Gaseous Autocatalytic Ethane Pyrolysis and Its Evaluation by Means of Uncertainty and Sensitivity Analysis

Liana F. Nurislamova / Olga P. Stoyanovskaya
  • Boreskov Institute of Catalysis, SBRAS, Novosibirsk, Russia
  • Novosibirsk State University, Novosibirsk, Russia
  • UNICAT Ltd., Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga A. Stadnichenko
  • Boreskov Institute of Catalysis, SBRAS, Novosibirsk, Russia
  • Novosibirsk State University, Novosibirsk, Russia
  • UNICAT Ltd., Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irek M. Gubaidullin / Valeriy N. Snytnikov
  • Boreskov Institute of Catalysis, SBRAS, Novosibirsk, Russia
  • Novosibirsk State University, Novosibirsk, Russia
  • UNICAT Ltd., Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anastasia V. Novichkova
Published Online: 2014-09-04 | DOI: https://doi.org/10.1515/cppm-2014-0008

Abstract

A kinetic scheme of radical chain reactions in autocatalytic pyrolysis of ethane was studied using a sensitivity analysis method, bringing in the experimental data. In the gas-phase kinetic experiments, ethane pyrolysis was carried out in laboratory reactors with the reaction mixture heated by CO2 laser irradiation. It was shown that the scheme with autocatalytic routes includes as few steps as possible and adequately describes the ethane pyrolysis with high ethylene yield at 900–1,150 K. Admissible variation ranges of preexponential factors and activation energies for the kinetic model of the reactions were found using the Monte Carlo statistical method. Reducibility of the scheme was examined by means of the Sobol’s variance based strategy applied for the sensitivity analysis evaluation.

Keywords: sensitivity analysis; reaction mechanisms; ethane pyrolysis; autocatalysis

References

  • 1.

    Matheu DM, Grenda JM. Pathways to the minor products. J Phys Chem A 2005;109:5332–42.PubMedCrossrefGoogle Scholar

  • 2.

    Matheu DM, Grenda JM. Radical disproportionations, missing reaction families, and the consequences of pressure dependence. J Phys Chem A 2005;109:5343–51.PubMedCrossrefGoogle Scholar

  • 3.

    Ponomarev AV, Tsivadze AA. Gas-to-liquid conversion of alkanes by electron beam radiolysis. Dokl Phys Chem 2006;411:345–51.CrossrefGoogle Scholar

  • 4.

    Pushkarev AI, Ai-Min Z, Xiao-Song Li, Sazonov RV. Methane conversion in low-temperature plasma. High Energy Chem 2009;43:156–62.CrossrefGoogle Scholar

  • 5.

    Chavadej S, Rueangjitt N, Sreethawong T. Reforming of CO-containing natural gas with partial oxidation using an AC gliding arc system. In: Proceedings of 18th international symposium on plasma chemistry, Kyoto, 2007;552–61.Google Scholar

  • 6.

    Mantashyan AA, Khachatryan LA, Eduard AA. Slozhnyye gazofaznyye reaktsii prevrashcheniya uglevodorod-kislorodnykh smesey v usloviyakh lazernogo nagreva. Kinetika I Kataliz 1989;30:272–6 (Russian).Google Scholar

  • 7.

    Karlov NV, Kirichenko NA, Luk’yanchuk BS. Laser thermochemistry: fundamentals and applications. Cambridge: Cambridge International Science Publishing, 2000:370.Google Scholar

  • 8.

    Snytnikov VN, Mishchenko TI, Snytnikov VN, Stoyanovskaya OP, Parmon VN. Autocatalytic gas-phase ethane dehydrogenation in a wall-less reactor. Kinet Catalysis 2010;51:10–17.Web of ScienceCrossrefGoogle Scholar

  • 9.

    Snytnikov VN, Mischenko TI, Snytnikov VN, Chernykh IG. A reactor for the study of homogeneous processes using laser radiation energy. Chem Eng J 2009;150:231–6.CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Snytnikov VN, Mishchenko TI, Snytnikov VN, Malykhin SE, Avdeev VI, Parmon VN. Autocatalytic gas-phase dehydrogenation of ethane. Res Chem Intermed 2012;38:1133–47.CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Snytnikov PV, Stoyanovskaya OP. Supercomputer simulation of laser-catalytic reactor of C2-C3 alkane pyrolysis. Proceedings of the International Conference “Advanced Mathematics, computations and applications – 2014”; 2014 June 8–11; Institute of Computational Mathematics and Mathematical Geophysics SBRAS; Akademgorodok, Novosibirsk, Russia. Novosibirsk: Academizdat, 2014:122.Google Scholar

  • 12.

    Norinaga K, Deutschmann O. Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Ind Eng Chem Res 2007;46:3547–57.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Tomlin AS, Pilling MJ, Merkin JH, Brindley J, Burgess N, Gough A. Reduced mechanisms for propane pyrolysis. Ind Eng Chem Res 1995;34:3749–60.CrossrefGoogle Scholar

  • 14.

    Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 1990;5:203–48.CrossrefGoogle Scholar

  • 15.

    Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulation 2001;55:271–80.CrossrefGoogle Scholar

  • 16.

    Masel RI. Chemical kinetics and catalysis. New York: Wiley Interscience, 2001:952.Google Scholar

  • 17.

    Polak LS, Goldenberg MY, Levitskiy AA. Computational methods in chemical kinetics. Moscow: Nauka, 1984:280 (Russian).Google Scholar

  • 18.

    Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev 2005;105:2811–28.Web of ScienceCrossrefPubMedGoogle Scholar

  • 19.

    Zádor J, Zsély IG, Turányi T. Local and global uncertainty analysis of complex chemical kinetic systems. Rel Eng Sys Safety 2006;91:1232–40.CrossrefGoogle Scholar

  • 20.

    Helton JC. Uncertainty and sensitivity analysis for models of complex systems. Comput Methods Transp Verification Validatio 2008;62:207–28.CrossrefGoogle Scholar

  • 21.

    Tomlin AS, Ziehn T. The use of global sensitivity methods for the analysis, evaluation and improvement of complex modelling systems. In: Gorban AN, Roose D, editors. Coping with complexity: model reduction and data analysis. Heidelberg (Berlin): Springer, 2011:355.Google Scholar

  • 22.

    You XQ, Russi T, Packard A, Frenklach M. The role of sensitivity and uncertainty analysis in combustion modeling. Proc Combust Inst 2011;33:509–16.CrossrefWeb of ScienceGoogle Scholar

  • 23.

    Frenklach M, Packard A, Seiler P, Feeley R. Collaborative data processing in developing predictive models of complex reaction systems. Int J Chem Kinet 2004;36:57–66.CrossrefGoogle Scholar

  • 24.

    Kantorovich LV. On some new approaches to computational methods and processing of observations. Sib Mat Zh 1962;3:701–9.Google Scholar

  • 25.

    Tikhonova MV, Garifullina GG, Gerchikov AY, Spivak SI. The kinetic model of n-decane oxidation in the presence of inhibitory composition. Int J Chem Kinet 2014;46:220–30.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Saltelli A. Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 2002;145:280–97.CrossrefGoogle Scholar

  • 27.

    Sobol IM. Uniformly distributed sequences with an additional uniform property. Zh Vych Mat Mat Fiz 1976;16:1332–7 (Russian).Google Scholar

  • 28.

    Saisana M, Saltelli A, Uncertainty TS. Sensitivity analysis techniques as tools for the quality assessment of composite indicators. J R Stat Soc A 2011;168:307–23.Google Scholar

  • 29.

    Turanyi T, Nagy T, Zsely IG, Cserhati M, Varga T, Szabo BT, et al. Determination of rate parameters based on both direct and indirect measurements. Int J Chem Kinet 2012;44:284–302.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-09-04

Published in Print: 2014-12-01


Research funding: Russian Foundation for Basic Research (Grant/Award Number: “Projects Nos. 12-07-31029, 12-07-00324, 12-08-0087”).


Citation Information: Chemical Product and Process Modeling, Volume 9, Issue 2, Pages 143–154, ISSN (Online) 1934-2659, ISSN (Print) 2194-6159, DOI: https://doi.org/10.1515/cppm-2014-0008.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
O.A. Stadnichenko, V.N. Snytnikov, Vl.N. Snytnikov, and N.S. Masyuk
Chemical Engineering Research and Design, 2016, Volume 109, Page 405

Comments (0)

Please log in or register to comment.
Log in