Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Product and Process Modeling

Ed. by Sotudeh-Gharebagh, Rhamat / Mostoufi, Navid / Chaouki, Jamal


CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.347

Online
ISSN
1934-2659
See all formats and pricing
More options …

Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas production

Bamidele V. Ayodele / Chin Kui Cheng
Published Online: 2015-08-21 | DOI: https://doi.org/10.1515/cppm-2015-0027

Abstract

In this work, process modelling, thermodynamic analysis and optimization of stand-alone dry and partial oxidation reforming of methane as well as, the auto-thermal reforming processes were investigated. Firstly, flowsheet models were developed for both the stand-alone systems and auto-thermal reforming process using ASPEN HYSYS®. Furthermore, thermodynamic studies were conducted for the stand-alone and auto-thermal reforming processes for temperatures range of 200–1000°C and pressure range of 1–3 bar using Gibbs free energy minimization methods which was also performed using ASPEN HYSYS®. The simulation of the auto-thermal reforming process was also performed at 20 bar to mimic industrial process. Process parameters were optimized in the combined reforming process for hydrogen production using desirability function. The simulation results show that 84.60 kg/h, 62.08 kg/h and 154.7 kg/h of syngas were produced from 144 kg/h, 113 kg/h and 211 kg/h of the gas fed into the Gibbs reactor at CH4/CO2/O2 ratio 1:1:1 for the stand-alone dry reforming, partial oxidation reforming and auto-thermal processes respectively. Equilibrium conversion of CH4, CO2, O2 were thermodynamically favoured between 400 and 800°C with highest conversions of 100%, 95.9% and 86.7% for O2, CO2 and CH4 respectively. Highest yield of 99% for H2 and 40% for CO at 800°C was obtained. The optimum conditions for hydrogen production were obtained at CH4/CO2, CH4/O2 ratios of 0.634, 0.454 and temperature of 800°C respectively. The results obtained in this study corroborate experimental studies conducted on auto-thermal reforming of methane for hydrogen and syngas production.

Keywords: process modelling; thermodynamics; reforming; equilibrium conversion; Gibbs free energy minimization

References

  • 1. Blaschke T, Biberacher M. ‘Energy landscapes’: meeting energy demands and human aspirations. Biomass Bioenergy 2013;5:3–16.Web of ScienceGoogle Scholar

  • 2. Ediger VŞ, Hoşgör E, Neşen Sürmeli A, Tatlıdil H. Fossil fuel sustainability index: an application of resource management. Energy Policy 2007;35:2969–77.Web of ScienceGoogle Scholar

  • 3. Guo Setal. Inventory and input–output analysis of CO2 emissions by fossil fuel consumption in Beijing 2007. Ecol Inf 2012;12:93–100.Google Scholar

  • 4. Le Quéré C, et al. Global carbon budget 2013. Earth Syst Sci Data 2014;6:235–63.Google Scholar

  • 5. Braga TP, Santos RC, Sales BM, da Silva BR, Pinheiro AN, Leite ER, et al. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology. Chin J Catal 2014;35:514–23.Google Scholar

  • 6. Hadian N, Rezaei M, Mosayebi Z, Meshkani F. CO2 reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. J Nat Gas Chem 2012;21:200–6.Google Scholar

  • 7. Fei Q et al. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 2014;32:596–614.Web of ScienceGoogle Scholar

  • 8. Wood DA, Towler BF. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng 2012;9:196–208.Web of ScienceGoogle Scholar

  • 9. Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F. Catalytic features of Rh and Ni supported catalysts in the steam reforming of Glycerol to produce hydrogen. Appl Catal A: Gen 2010;381:1–7.Google Scholar

  • 10. Sehested J. Four challenges for Nickel steam-reforming catalysts. Cataly Today 2006;111:103–10.Google Scholar

  • 11. Chaubey R, Sahu S, James OO, Maity S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable Sustainable Energy Rev 2013;23:443–62.Google Scholar

  • 12. Itkulova ShS, Zhunusova KZ, Zakumbaeva GD. CO2 reforming of methane over co-pd/Al2O3 catalysts. 2005;26:1–4.Google Scholar

  • 13. Tao K, Shi L, Ma Q, Zeng C, Kong C. Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst. Chem Eng Sci 2013;221:25–31.Web of ScienceGoogle Scholar

  • 14. Budiman AW, Song S-H, Chang T-S, Shin C-Ho, Choi M-J. Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catal Surv Asia 2012;16:183–97.Web of ScienceGoogle Scholar

  • 15. Er H, Bouallou C, Werkoff F. Dry reforming of methane – review of feasibility studies. 2012;29:163–8.Google Scholar

  • 16. Goeke RS, Datye AK. Model oxide supports for studies of catalyst sintering at elevated temperatures. Topic Catal 2007;46:3–9.Google Scholar

  • 17. Moodley DJ, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Appl Catal A: Gen 2009;354:102–10.Web of ScienceGoogle Scholar

  • 18. Oliveira HA, Franceschinib DF, Passos FB. Cobalt catalyst characterization for methane decomposition and carbon nanotube growth. J Braz Chem Soc 2014;25:2339–49.Web of ScienceGoogle Scholar

  • 19. Christian Enger B, Lødeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A: Gen 2008;346:1–27.Web of ScienceGoogle Scholar

  • 20. Mattos LV, Rodino E, Resasco DE, Passos FB. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce – ZrO2 catalysts. Instituto Nacional De Tecnologia 2013:1–17.Google Scholar

  • 21. Nematollahi B, Rezaei M, Khajenoori M. Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int J Hydrogen Energy 2011;36:2969–78.Web of ScienceGoogle Scholar

  • 22. Li B, Xu X, Zhang S. Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over ce-promoted ni/SiO2 catalysts Int J Hydrogen Energy 2013;38:890–900.Google Scholar

  • 23. Mohanty S. Multiobjective optimization of synthesis gas production using non-dominated sorting genetic algorithm. Comput Chem Eng 2006;30:1019–25.Google Scholar

  • 24. Koo KY, Lee S-hun, Ho Jung Un, Roh H-S, Yoon WL. Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance. Fuel Process Technol 2014;119:151–7.Web of ScienceGoogle Scholar

  • 25. Nikoo MK, Amin NAS. Thermodynamic analysis of carbon dioxide reforming of methane In View Of solid carbon formation. Fuel Process Technol 2011;92:678–91.Google Scholar

  • 26. Amin NAS, Yaw TC. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas. Int J Hydrogen Energy 2007;32:1789–98.Web of ScienceGoogle Scholar

  • 27. Soria MA, Mateos-Pedrero C, Guerrero-Ruiz A, Rodríguez-Ramos I. Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ZrO2-La2O3 catalyst at low temperature. Int J Hydrogen Energy 2011;36:15212–20.Google Scholar

  • 28. Halabi M, Decroon M, Vanderschaaf J, Cobden P, Schouten J. Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem Eng J 2008;137:568–78.Google Scholar

  • 29. Iyer MV, Norcio LP. Kinetic modeling for methane reforming with carbon dioxide over a mixed-metal carbide catalyst. Ind Eng 2003:2712–21.Google Scholar

  • 30. Prabhu AA, Lovell LL, Oyama S. Modeling of the methane reforming reaction in hydrogen selective membrane reactors. J Membr Sci 2000;177:83–95.Google Scholar

  • 31. Chaniotis AK, Poulikakos D. Modeling and optimization of catalytic partial oxidation methane reforming for fuel cells. J Power Sources 2005;142:184–93.Google Scholar

  • 32. Özkara-Aydınoğlu Ş. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. Int J Hydrogen Energy 2010;35:12821–8.Google Scholar

  • 33. Li Y, Wang Y, Zhang X, Mi Z. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int J Hydrogen Energy 2008;33:2507–14.Web of ScienceGoogle Scholar

  • 34. Bermúdez JM, Arenillas A, Menéndez JA. Equilibrium prediction of CO2 reforming of coke oven gas : suitability for methanol production. Chem Eng Sci 2012;82:95–103.Google Scholar

  • 35. Song C, Pan W. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 2004;98:463–84.Google Scholar

  • 36. Sun Y, Ritchie T, Hla SS, McEvoy S. Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications. J Nat Gas 2011;20:568–76.Google Scholar

  • 37. Xu Z, Sandler SI. Temperature-dependent parameters and the Peng-Robinson equation of state. Ind Eng Chem Res 1987;1986:601–6.Google Scholar

  • 38. Özkara-Aydınoğlu Ş, Özensoy E, Aksoylu AE. The effect of impregnation strategy on methane dry reforming activity of ce promoted pt/ZrO2. Int J Hydrogen Energy 2009;34:9711–22.Web of ScienceGoogle Scholar

  • 39. Serrano-Lotina A, Daza L. Influence of the operating parameters over dry reforming of methane to syngas. Int J Hydrogen Energy 2014;39:4089–94.Web of ScienceGoogle Scholar

  • 40. Wang N, Chu W, Zhang T, Zhao XS. Synthesis, characterization and catalytic performances of ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrogen Energy 2012;37:19–30.Web of ScienceGoogle Scholar

  • 41. Velasco JA, Lopez L, Cabrera S, Boutonnet M, Järås S. Synthesis gas production for GTL applications: thermodynamic equilibrium approach and potential for carbon formation in a catalytic partial oxidation pre-reformer. J Nat Gas Sci Eng 2014;20:175–83.Web of ScienceGoogle Scholar

  • 42. Khine MSS, Chen L, Zhang S, Lin J, Jiang SP. Syngas production by catalytic partial oxidation of methane over (la 0.7 A 0.3) BO3 (A [ba, ca, mg, sr, and B [cr or fe) perovskite oxides for portable fuel cell applications. Int J Hydrogen Energy 2013;38:13300–8.Web of ScienceGoogle Scholar

  • 43. Asencios YJO, Assaf EM. Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: effect of nickel content. Fuel Process Technol 2013;106:247–52.Google Scholar

  • 44. Pichas Ch, Pomonis P, Petrakis D, Ladavos A. Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2 − xSrxNiO4 perovskite-type oxides. Appl Catal A: Gen 2010;386:116–23.Google Scholar

  • 45. Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon 2007;45:1314–21.Web of ScienceGoogle Scholar

  • 46. Zhang G, Su A, Du Y, Qu J, Xu Y. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4. J Colloid Interface Sci 2014;433:149–55.Web of ScienceGoogle Scholar

  • 47. Wang W, Stagg-Williams SM, Noronha FB. Partial oxidation and combined reforming of methane on ce-promoted catalysts. Catalysis Today 2004;98:553–63.Google Scholar

  • 48. Wu F-C. Optimization of correlated multiple quality characteristics using desirability function. Qual Eng 2004;17:119–26.Google Scholar

About the article

Published Online: 2015-08-21

Published in Print: 2015-12-01


Citation Information: Chemical Product and Process Modeling, Volume 10, Issue 4, Pages 211–220, ISSN (Online) 1934-2659, ISSN (Print) 2194-6159, DOI: https://doi.org/10.1515/cppm-2015-0027.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in