Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Product and Process Modeling

Ed. by Sotudeh-Gharebagh, Rhamat / Mostoufi, Navid / Chaouki, Jamal


CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.368

Online
ISSN
1934-2659
See all formats and pricing
More options …

Process Integration and Feedstock Optimisation of a Two-Step Biodiesel Production Process from Jatropha Curcas Using Aspen Plus

Adewale George Adeniyi
  • Corresponding author
  • Chemical Engineering Department, Faculty of Engineering and Technology,University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joshua O Ighalo
  • Chemical Engineering Department, Faculty of Engineering and Technology,University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omodele A. A Eletta
  • Chemical Engineering Department, Faculty of Engineering and Technology,University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-11 | DOI: https://doi.org/10.1515/cppm-2018-0055

Abstract

Jatropha curcas oil (JCO) has been recognized as a viable non-edible feedstock for biodiesel production with the focus of achieving lesser reliance on fossil fuels. The aim of this work is to integrate and simulate the production of biodiesel from Jatropha curcas oil by a two-step process; a hydrolysis step and a trans-esterification step. The challenge is then to optimise the feedstock ratios to obtain the minimal water and methanol consumption to give optimal biodiesel yield. For this purpose, steady-state simulation model of a two-step production process of biodiesel from Jatropha curcas oil was prepared using ASPEN Plus V8.8. The response surface methodology (RSM) based on a central composite design (CCD) was used to design optimisation experiments for the research work. From the ANOVA, methanol/oil ratio of the trans-esterification step was found to have a significant effect on the biodiesel yield compared to the water/oil ratio of the hydrolysis step. The linear model developed was shown to be a good predictor of feedstock ratios for biodiesel yield. The surface plot revealed that both feedstock ratios do not show a significant combinatorial effect on each other. Numerical optimisation gave the optimum values of the feedstock ratios as a methanol/oil ratio of 2.667 and a water/oil ratio of 1. The optimisation results also indicated a predicted optimum biodiesel yield of 10.0938 kg/hr.

Keywords: process integration; biodiesel; simulation; feedstock optimisation; Jatropha curcas oil; ASPEN Plus; central composite design

References

  • [1]

    Koh MY, Ghazi TIM. A review of biodiesel production from Jatropha curcas L. oil. Renewable Sustainable Energy Rev. 2011;15:2240–51.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    Pambudi NA, Laukkanen T, Fogelholm C-J, Kohl T, Jarvinen M. Prediction of gas composition of Jatropha curcas Linn oil cake in entrained flow reactors using ASPEN PLUS simulation software. Int J Sustainable Eng. 2013;6:142–50.CrossrefGoogle Scholar

  • [3]

    Ofari–Boateng C, Keat TL, JitKang L. Sustainability assessment of microalgal biodiesel production processes: an exergetic analysis approach with Aspen Plus. Int J Exergy. 2012;10:400–16.Web of ScienceCrossrefGoogle Scholar

  • [4]

    Averill D, Nabea W, Piard C. A Comparison of Biodiesel Processes for the Conversion of Jatropha Curcas. Department of Chemical Engineering. Worcester Polytechnic Institute, 2010:1–70.Google Scholar

  • [5]

    Blanco-Marigorta A, Suárez-Medina J, Vera-Castellano A. Exergetic analysis of a biodiesel production process from Jatropha curcas. Appl Energy. 2013;101:218–25.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Tiwari AK, Kumar A, Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy. 2007;31:569–75.CrossrefGoogle Scholar

  • [7]

    Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable Sustainable Energy Rev. 2013;18:211–45.Web of ScienceCrossrefGoogle Scholar

  • [8]

    Baroi C, Yanful EK, Bergougnou MA. Biodiesel production from Jatropha curcas oil using potassium carbonate as an unsupported catalyst. Int J Chem Reactor Eng. 2009;7:1–18Google Scholar

  • [9]

    Demirbas A. Potential resources of non-edible oils for biodiesel. Energy Sources Part B. 2009;4:310–14.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol. 2008;99:1716–21.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [11]

    Aransiola E, Ojumu T, Oyekola O, Madzimbamuto T, Ikhu-Omoregbe D. A review of current technology for biodiesel production: state of the art. Biomass Bioenergy. 2014;61:276–97.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Ganapathy T, Murugesan KA, Gakkhar R. Performance optimization of Jatropha biodiesel engine model using Taguchi approach. Appl Energy. 2009;86:2476–86.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    Zapata N, Vargas M, Reyes JF, Belmar G. Quality of biodiesel and press cake obtained from Euphorbia lathyris, Brassica napus and Ricinus communis. Ind Crops Prod. 2012;38:1–5.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Budiman A, Kusumaningtyasa RD, Rochmadia S, Purwonoa S. Second generation of biodiesel production from indonesian jatropha oil by continuous reactive distillation process. AJChE. 2009, 2009;2:40–55.Google Scholar

  • [15]

    Rincón L, Jaramillo J, Cardona C. Comparison of feedstocks and technologies for biodiesel production: an environmental and techno-economic evaluation. Renewable Energy. 2014;69:479–87.Web of ScienceCrossrefGoogle Scholar

  • [16]

    Martinez-Hernandez E, Martinez-Herrera J, Campbell GM, Sadhukhan J. Process integration, energy and GHG emission analyses of Jatropha-based biorefinery systems. Biomass Convers Biorefin. 2014;4:105–24.CrossrefGoogle Scholar

  • [17]

    Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res. 2009;29:396–403.Google Scholar

  • [18]

    Hawash S, Kamal N, Zaher F, Kenawi O, El Diwani G. Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel. 2009;88:579–82.Web of ScienceCrossrefGoogle Scholar

  • [19]

    Kumar N, Sharma P. Jatropha curcus-A sustainable source for production of biodiesel. Journal of Scientific & Industrial Research, 2005:883–9.Google Scholar

  • [20]

    Ong H, Mahlia T, Masjuki H, Norhasyima R. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renewable Sustainable Energy Rev. 2011;15:3501–15.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Vyas AP, Subrahmanyam N, Patel PA. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel. 2009;88:625–28.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Syazwani O, Teo SH, Islam A, Taufiq-Yap YH. Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Saf Environ Prot. 2017;105:303–15.CrossrefGoogle Scholar

  • [23]

    Teo SH, Islam A, Taufiq-Yap YH. Algae derived biodiesel using nanocatalytic transesterification process. Chem Eng Res Design. 2016;111:362–70.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Teo SH, Taufiq-Yap YH, Rashid U, Islam A. Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Adv. 2015;5:4266–76.Web of ScienceCrossrefGoogle Scholar

  • [25]

    Teo SH, Islam A, Ng CH, Mansir N, Ma T, Choong ST, et al. Methoxy-functionalized mesostructured stable carbon catalysts for effective biodiesel production from non-edible feedstock. Chem Eng J. 2018;334:1851–68.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Theam KL, Islam A, Lee HV, Taufiq-Yap YH. Sucrose-derived catalytic biodiesel synthesis from low cost palm fatty acid distillate. Process Saf Environ Prot. 2015;95:126–35.CrossrefGoogle Scholar

  • [27]

    Teo S, Islam A, Ng F, Taufiq-Yap Y. Biodiesel synthesis from photoautotrophic cultivated oleoginous microalgae using a sand dollar catalyst. RSC Adv. 2015;5:47140–52.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Abdurakhman Y, Putra Z, Bilad M. Aspen HYSYS simulation for biodiesel production from waste cooking oil using membrane reactor. in IOP conference series: materials science and engineering. 2017. IOP Publishing.Google Scholar

  • [29]

    Lee S, Posarac D, Ellis N. Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem Eng Res Design. 2011;89:2626–42.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Sajid Z, Khan F, Zhang Y. Process simulation and life cycle analysis of biodiesel production. Renewable Energy. 2016;85:945–52.CrossrefWeb of ScienceGoogle Scholar

  • [31]

    Santana G, Martins P, Da Silva NDL, Batistella C, Maciel Filho R, Maciel MW. Simulation and cost estimate for biodiesel production using castor oil. Chem Eng Res Des. 2010;88:626–32.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Azhari TI, Ghazi M, Resul MFMG, Yunus R, Yaw TCS. Preliminary design of oscillatory flow biodiesel reactor for continuous biodiesel production from Jatropha triglycerides. J Eng Sci Technol. 2008;3:138–45.Google Scholar

  • [33]

    Mohd JMU. Simulation of reactive distillation for biodiesel production from jatropha curcas seed oil. Deparrtment of chemical engineering. Universiti Malaysia Pahang, 2010:1–25.Google Scholar

  • [34]

    Okullo A, Noah T. Process simulation of biodiesel production from jatropha curcas seed oil. Am J Chem Eng. 2017;5:56–63.CrossrefGoogle Scholar

  • [35]

    Phuenduang S, Chatsirisook P, Simasatitkul L, Paengjuntuek W, Arpornwichanop A. Heat-integrated reactive distillation for biodiesel production from Jatropha oil. Computer aided chemical engineering Vol. 31, 2012:250–4.CrossrefGoogle Scholar

  • [36]

    Phuenduang S, Siricharnsakunchai P, Simasatitkul L, Paengjuntuek W, Arpornwichanop A. Optimization of biodiesel production from Jatropha oil using reactive distillation. in TichE international conference at Hatyai Songkhla. 2011.Google Scholar

  • [37]

    Yusuf NN, Kamarudin SK, Yaakob Z. Overview on the production of biodiesel from Jatropha curcas L. by using heterogenous catalysts. Biofuel Bioprod Biorefin. 2012;6:319–34.CrossrefGoogle Scholar

  • [38]

    Bouaid A, El Boulifi N, Martinez M, Aracil J. Optimization of a two-step process for biodiesel production from Jatropha curcas crude oil. Int J Low-Carbon Technol. 2012;7:331–37.CrossrefGoogle Scholar

About the article

Received: 2018-09-26

Accepted: 2018-11-30

Revised: 2018-11-28

Published Online: 2018-12-11


Citation Information: Chemical Product and Process Modeling, Volume 14, Issue 2, 20180055, ISSN (Online) 1934-2659, DOI: https://doi.org/10.1515/cppm-2018-0055.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in