Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Product and Process Modeling

Ed. by Sotudeh-Gharebagh, Rhamat / Mostoufi, Navid / Chaouki, Jamal


CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.347

Online
ISSN
1934-2659
See all formats and pricing
More options …

Transesterification of Castor Oil with Methanol – Kinetic Modelling

Payal Chaudhary / Brajesh Kumar / Surendra Kumar
  • Corresponding author
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. K. Gupta
Published Online: 2015-04-17 | DOI: https://doi.org/10.1515/cppm-2014-0032

Abstract

In this research work, transesterification of castor oil with methanol and sulphuric acid catalyst has been carried out in a lab reactor of capacity 500 mL at various operating conditions (reaction temperature=35–65°C, pressure=1 atm, methanol/oil ratio=6:1 and 600 rpm). The effect of reaction temperature is considered, followed by the determination of kinetics of the production of biodiesel. Experimental results have been analysed with respect to three types of reaction kinetics, namely first-order irreversible reaction, second-order irreversible reaction and reversible reaction. For each of the schemes, the activation energy and Arrhenius constants were determined. The experimental data fits very well to second-order reversible reaction kinetics. Properties of fatty acid methyl ester (biodiesel) produced from castor oil have been experimentally determined and compared with standard values as given in EN 14214 norms.

Keywords: biodiesel production; kinetics; transesterification; modelling; castor oil

References

  • 1.

    Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Synthesis of biodiesel via acid catalysis . Ind Eng Chem Res 2005;44:5353–63.CrossrefGoogle Scholar

  • 2.

    Saloua F, Saber C, Hedi Z. Methyl ester of [Maclura pomifera (Rafi.) Schneider] seed oil: biodiesel production and characterization . Bioresour Technol 2010;101:3091–6.CrossrefGoogle Scholar

  • 3.

    Berrios M, Skelton RL. Comparison of purification methods for biodiesel . Chem Engg J 2008;144:459–65.CrossrefGoogle Scholar

  • 4.

    López JM, Cota NJG, Monterrosas EEG, Martínez RN, González VMC, Flores JLA, et al. Kinetic study by 1H nuclear magnetic resonance spectroscopy for biodiesel production from castor oil . Chem Engg J 2011;178:391–7.CrossrefGoogle Scholar

  • 5.

    Janaun J, Ellis N. Perspectives on biodiesel as a suitable fuel . Renew Sustain Energy Rev 2010;14:1312–20.CrossrefGoogle Scholar

  • 6.

    Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification . Appl Energy 2010;87:1083–95.CrossrefGoogle Scholar

  • 7.

    Issariyakul T, Dalai AK. Biodiesel from vegetable oils . Renew Sustain Energy Rev 2014;31:446–71.CrossrefGoogle Scholar

  • 8.

    Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production . Renew Sustain Energy Rev 2013;18:211–45.CrossrefGoogle Scholar

  • 9.

    Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D. Opportunities and challenges for biodiesel fuel . Appl Energy 2011;88:1020–31.CrossrefGoogle Scholar

  • 10.

    Vasudevan PT, Briggs M. Biodiesel production—current state of the art and challenges . J Ind Microbiol Biotechnol 2008;35:421–30.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock . Energy 2008;33:1646–53.CrossrefGoogle Scholar

  • 12.

    Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production . Renew Sustain Energy Rev 2013;18:211–45.CrossrefGoogle Scholar

  • 13.

    Madankar CS, Pradhan S, Naik SN. Parametric study of reactive extraction of castor seed (Ricinus communis L.) for methyl ester production and its potential use as bio lubricant . Ind Crops Prod 2013;43:283–90.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Pradhan S, Madankar CS, Mohanty P, Naik SN. Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology . Fuel 2012;97:848–55.CrossrefGoogle Scholar

  • 15.

    Ramezani K, Rowshanzamir S, Eikani MH. Castor oil transesterification reaction: a kinetic study and optimization of parameters . Energy 2010;35:4142–8.CrossrefGoogle Scholar

  • 16.

    Jeong GT, Park DH. Optimization of biodiesel production from castor oil using response surface methodology . Appl Biochem Biotechnol 2009;156:431–41.Google Scholar

  • 17.

    Kilic M, Uzun BB, Putun E, Putun AE. Optimization of biodiesel production from castor oil using factorial design . Fuel Process Technol 2013;111:105–10.CrossrefGoogle Scholar

  • 18.

    Silva NL, Batistella CB, Filho RM, Maciel MRW. Biodiesel production from castor oil: optimization of alkaline ethanolysis . Energy and Fuels 2009;23:5636–42.CrossrefGoogle Scholar

  • 19.

    Tiwari AK, Kumar A, Raheman H. Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process . Biomass Bioenerg 2007;31:569–75.CrossrefGoogle Scholar

  • 20.

    Canakci M, Gerpen JV. Biodiesel production from oils and fats with high free fatty acids . Trans ASAE 2001;44:1429–36.Google Scholar

  • 21.

    Concei MM, Fernandes Jr VJ, Bezerra AF, Silva MC, Santos MG, Silva FC, et al. Dynamic kinetic calculation of castor oil biodiesel . J Therm Anal Calor 2007;87:865–9.CrossrefGoogle Scholar

  • 22.

    Canoira L, Galean JG, Alcantara R, Lapuerta M, Garcia-Contreras R. Fatty acid methyl esters (fames) from castor oil: production process assessment and synergistic effects in its properties . Renew Energy 2010;35:208–17.CrossrefGoogle Scholar

  • 23.

    ASTM International. Designation: D5555 – 95. Standard test method for determination of free fatty acids contained in animal, marine, and vegetable fats and oil used in fat liquors and stuffing compounds (reapproved 2011).Google Scholar

  • 24.

    Ruppel T, Huybrighs T. Fatty acid methyl esters in B100 biodiesel by gas chromatography (modified EN 14103). Application Note, Perkin Elmer 2008–2012.Google Scholar

  • 25.

    Levenspiel O. Chemical reaction engineering. 3rd ed. New York: John Wiley & Sons, 1999.Google Scholar

  • 26.

    Freedman B, Butterfield RO, Pryde EH. Transesterification kinetics of soyabean oil . J Am Oil Chem Soc 1986;63:1375–80.CrossrefGoogle Scholar

  • 27.

    Berrios M, Siles J, Martin MA, Martin A. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil . Fuel 2007;86:2383–8.CrossrefGoogle Scholar

  • 28.

    Fogler HS. Elements of chemical reaction engineering. 3rd ed. New York: Prentice Hall of India Pvt. Ltd, 2006.Google Scholar

  • 29.

    Swaney R, Rawlings JB. Lecture notes on estimation of parameters from data. University of Wisconsin-Madison, 2011.Google Scholar

  • 30.

    Fromet GF, Bischoff KB. Chemical reactor analysis and design. 2nd ed. New York: John Wiley & Sons, 1990.Google Scholar

  • 31.

    Arora N, Beigler LT. Parameter estimation for a polymerization reactor model with a composite-step trust-region NLP algorithm . Ind Eng Chem Res 2004;43:3616–31.CrossrefGoogle Scholar

  • 32.

    Yusup S, Nik MK, Mohamed M. Polyol-ester synthesis via transesterification of Jatropha-based methyl ester with trimethylolpropane. San Francisco, U.S.A.: AIChE2013 annual conference proceedings, 2013.Google Scholar

  • 33.

    Abdulkareem AS, Jimoh A, Odigure JO, Patience D, Afolabi AS. Energy conservation, production and characterization of biofuel from non-edible oils: an alternative energy sources to petrol diesel, chapter 7. Croatia: In Tech Publisher, 2012.Google Scholar

  • 34.

    European Committee for Standardization (DIN). Fatty acid methyl esters (FAME) for diesel engines. Automotive fuels. Requirements and test methods. European Standards EN 14214; 2003.Google Scholar

About the article

Published Online: 2015-04-17

Published in Print: 2015-06-01


Funding: The authors are thankful to Ministry of Human Resources and Development, Govt. of India, New Delhi, for providing financial support to this work.


Citation Information: Chemical Product and Process Modeling, Volume 10, Issue 2, Pages 71–80, ISSN (Online) 1934-2659, ISSN (Print) 2194-6159, DOI: https://doi.org/10.1515/cppm-2014-0032.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in