Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2015, Issue 705

Issues

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below

Nicola Gigli / Andrea Mondino / Tapio Rajala
Published Online: 2013-09-05 | DOI: https://doi.org/10.1515/crelle-2013-0052

Abstract

We show that in any infinitesimally Hilbertian 𝖢𝖣*(K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to a Euclidean space in the pointed measured Gromov–Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian 𝖢𝖣*(0,N)-spaces.

About the article

Received: 2013-04-19

Revised: 2013-05-09

Published Online: 2013-09-05

Published in Print: 2015-08-01


Funding Source: ETH fellowship

Funding Source: ERC

Award identifier / Grant number: GeMeTheNES

Funding Source: Academy of Finland

Award identifier / Grant number: 137528


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2015, Issue 705, Pages 233–244, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2013-0052.

Export Citation

© 2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elia Brué and Daniele Semola
Communications on Pure and Applied Mathematics, 2019
[2]
Guido De Philippis and Nicola Gigli
Journal de l’École polytechnique — Mathématiques, 2018, Volume 5, Page 613
[4]
Alexander Lytchak and Stefan Wenger
Archive for Rational Mechanics and Analysis, 2017, Volume 223, Number 3, Page 1123
[5]
Nicola Garofalo and Andrea Mondino
Nonlinear Analysis: Theory, Methods & Applications, 2014, Volume 95, Page 721

Comments (0)

Please log in or register to comment.
Log in