[1]

Dehn M.,
Die Gruppe der Abbildungsklassen,
Acta Math. 69 (1938), no. 1, 135–206.
Google Scholar

[2]

Etnyre J. and Honda K.,
On the nonexistence of tight contact structures,
Ann. of Math. (2) 153 (2001), no. 3, 749–766.
Google Scholar

[3]

Ghiggini P.,
Strongly fillable contact 3-manifolds without Stein fillings,
Geom. Topol. 9 (2005), 1677–1687.
Google Scholar

[4]

Ghiggini P.,
Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants,
Geom. Topol. 10 (2006), 335–357.
Google Scholar

[5]

Ghiggini P.,
Ozsváth–Szabó invariants and fillability of contact structures,
Math. Z. 253 (2006), no. 1, 159–175.
Google Scholar

[6]

Ghiggini P. and Honda K.,
Giroux torsion and twisted coefficients,
preprint 2008, http://arxiv.org/abs/0804.1568.

[7]

Ghiggini P., Honda K. and Van Horn-Morris J.,
The vanishing of the contact invariant in the presence of torsion,
preprint 2008, http://arxiv.org/abs/0706.1602.

[8]

Ghiggini P. and Schönenberger S.,
On the classification of tight contact structures,
Topology and geometry of manifolds,
Proc. Sympos. Pure Math. 71,
American Mathematical Society, Providence (2003), 121–151.
Google Scholar

[9]

Giroux E.,
Une infinité de structures de contact tendues sur une infinité de variétés,
Invent. Math. 135 (1999), no. 3, 789–802.
Google Scholar

[10]

Giroux E.,
Structures de contact en dimension trois et bifurcations des feuilletages de surfaces,
Invent. Math. 141 (2000), no. 3, 615–689.
Google Scholar

[11]

Gompf R.,
Handlebody construction of Stein surfaces,
Ann. of Math. (2) 148 (1998), no. 2, 619–693.
Google Scholar

[12]

Greenberg M. and Harper J.,
Algebraic topology. A first course,
Math. Lecture Note Ser. 58,
Benjamin/ Cummings Publishing, Reading 1981.
Google Scholar

[13]

Honda K.,
On the classification of tight contact structures I,
Geom. Topol. 4 (2000), 309–368.
Google Scholar

[14]

Honda K.,
On the classification of tight contact structures II,
J. Differential Geom. 55 (2000), no. 1, 83–143.
Google Scholar

[15]

Jabuka S. and Mark T.,
Product formulae for Ozsváth–Szabó 4-manifold invariants,
Geom. Topol. 12 (2008), no. 3, 1557–1651.
Google Scholar

[16]

Johnson D.,
Homeomorphisms of a surface which act trivially on homology,
Proc. Amer. Math. Soc. 75 (1979), no. 1, 119–125.
Google Scholar

[17]

Lisca P. and Matić G.,
Tight contact structures and Seiberg–Witten invariants,
Invent. Math. 129 (1997), no. 3, 509–525.
Google Scholar

[18]

Lisca P. and Stipsicz A.,
Ozsváth-Szabó invariants and tight contact three-manifolds. I,
Geom. Topol. 8 (2004), 925–945.
Google Scholar

[19]

Onaran S.,
Legendrian knots and open book decompositions,
Ph.D. thesis, Middle East Technical University 2009.
Google Scholar

[20]

Ozsváth P. and Szabó Z.,
Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary,
Adv. Math. 173 (2003), no. 2, 179–261.
Google Scholar

[21]

Ozsváth P. and Szabó Z.,
Holomorphic disks and genus bounds,
Geom. Topol. 8 (2004), 311–334.
Google Scholar

[22]

Ozsváth P. and Szabó Z.,
Holomorphic disks and three-manifold invariants: Properties and applications,
Ann. of Math. (2) 159 (2004), no. 3, 1159–1245.
Google Scholar

[23]

Ozsváth P. and Szabó Z.,
Heegaard Floer homology and contact structures,
Duke Math. J. 129 (2005), no. 1, 39–61.
Google Scholar

[24]

Ozsváth P. and Szabó Z.,
Holomorphic triangles and invariants for smooth four-manifolds,
Adv. Math. 202 (2006), no. 2, 326–400.
Google Scholar

[25]

Plamenevskaya O.,
Contact structures with distinct Heegaard Floer invariants,
Math. Res. Lett. 11 (2004), no. 4, 547–561.
Google Scholar

[26]

Van Horn-Morris J.,
Contructions of open book decompositions,
Ph.D. dissertation, University of Texas at Austin 2007.
Google Scholar

[27]

Wu H.,
On Legendrian surgeries,
Math. Res. Lett. 14 (2007), no. 3, 513–530.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.