[1]

Adams J. F.,
Infinite loop spaces,
Ann. of Math. Stud. 90,
Princeton University Press, Princeton 1978.
Google Scholar

[2]

Arlettaz D.,
The order of the differentials in the Atiyah–Hirzebruch spectral sequence,
*K*-Theory 6 (1992), no. 4, 347–361.
Google Scholar

[3]

Atiyah M. and Segal G.,
Twisted *K*-theory,
Ukr. Mat. Visn. 1 (2004), no. 3, 287–330.
Google Scholar

[4]

Atiyah M. and Segal G.,
Twisted *K*-theory and cohomology,
Inspired by S. S. Chern,
Nankai Tracts Math. 11,
World Scientific, Hackensack (2006), 5–43.
Google Scholar

[5]

Bellissard J.,
*K*-theory of ${C}^{\ast}$-algebras in solid state physics,
Statistical mechanics and field theory: Mathematical aspects (Groningen 1985),
Lecture Notes in Phys. 257,
Springer-Verlag, Berlin (1986), 99–156.
Google Scholar

[6]

Benson D. J., Kumjian A. and Phillips N. C.,
Symmetries of Kirchberg algebras,
Canad. Math. Bull. 46 (2003), no. 4, 509–528.
Google Scholar

[7]

Blackadar B.,
*K*-theory for operator algebras, 2nd ed.,
Math. Sci. Res. Inst. Publ. 5,
Cambridge University Press, Cambridge 1998.
Google Scholar

[8]

Blackadar B.,
Operator algebras,
Encyclopaedia Math. Sci. 122,
Springer-Verlag, Berlin 2006.
Google Scholar

[9]

Bouwknegt P. and Mathai V.,
D-branes, *B*-fields and twisted *K*-theory,
J. High Energy Phys. 11 (2000), no. 3, Paper No. 7.
Google Scholar

[10]

Brown L. G.,
Stable isomorphism of hereditary subalgebras of ${C}^{*}$-algebras,
Pacific J. Math. 71 (1977), no. 2, 335–348.
Google Scholar

[11]

Brown L. G., Green P. and Rieffel M. A.,
Stable isomorphism and strong Morita equivalence of ${C}^{*}$-algebras,
Pacific J. Math. 71 (1977), no. 2, 349–363.
Google Scholar

[12]

Connes A.,
Noncommutative geometry,
Academic Press, San Diego 1994.
Google Scholar

[13]

Cuntz J. and Higson N.,
Kuiper’s theorem for Hilbert modules,
Operator algebras and mathematical physics (Iowa City 1985),
Contemp. Math. 62,
American Mathematical Society, Providence (1987), 429–435.
Google Scholar

[14]

Dadarlat M.,
The homotopy groups of the automorphism group of Kirchberg algebras,
J. Noncommut. Geom. 1 (2007), no. 1, 113–139.
Google Scholar

[15]

Dadarlat M.,
Fiberwise *KK*-equivalence of continuous fields of ${C}^{*}$-algebras,
J. K-Theory 3 (2009), no. 2, 205–219.
Google Scholar

[16]

Dadarlat M. and Pennig U.,
Unit spectra of *K*-theory from strongly self-absorbing ${C}^{*}$-algebras,
preprint 2013, http://arxiv.org/abs/1306.2583.

[17]

Dadarlat M. and Winter W.,
Trivialization of $C(X)$-algebras with strongly self-absorbing fibres,
Bull. Soc. Math. France 136 (2008), no. 4, 575–606.
Google Scholar

[18]

Dadarlat M. and Winter W.,
On the *KK*-theory of strongly self-absorbing ${C}^{*}$-algebras,
Math. Scand. 104 (2009), no. 1, 95–107.
Google Scholar

[19]

Dixmier J.,
${C}^{*}$-algebras,
North Holland, Amsterdam 1982.
Google Scholar

[20]

Dixmier J. and Douady A.,
Champs continus d’espaces hilbertiens et de ${C}^{\ast}$-algèbres,
Bull. Soc. Math. France 91 (1963), 227–284.
Google Scholar

[21]

Donovan P. and Karoubi M.,
Graded Brauer groups and *K*-theory with local coefficients,
Publ. Math. Inst. Hautes Études Sci. 38 (1970), 5–25.
Google Scholar

[22]

Eckmann B. and Hilton P. J.,
Group-like structures in general categories. I. Multiplications and comultiplications,
Math. Ann. 145 (1961/1962), 227–255.
Google Scholar

[23]

Eilenberg S. and Steenrod N.,
Foundations of algebraic topology,
Princeton University Press, Princeton 1952.
Google Scholar

[24]

Herman R. H. and Rosenberg J.,
Norm-close group actions on ${C}^{\ast}$-algebras,
J. Operator Theory 6 (1981), no. 1, 25–37.
Google Scholar

[25]

Hilton P.,
General cohomology theory and *K*-theory,
London Math. Soc. Lecture Note Ser. 1,
Cambridge University Press, London 1971.
Google Scholar

[26]

Hirshberg I., Rørdam M. and Winter W.,
${\mathcal{\mathcal{C}}}_{0}(X)$-algebras, stability and strongly self-absorbing ${C}^{*}$-algebras,
Math. Ann. 339 (2007), no. 3, 695–732.
Google Scholar

[27]

Huber P. J.,
Homotopical cohomology and Čech cohomology,
Math. Ann. 144 (1961), 73–76.
Google Scholar

[28]

Jiang X.,
Nonstable *K*-theory for $\mathcal{\mathcal{Z}}$-stable ${C}^{*}$-algebras,
preprint 1997, http://arxiv.org/abs/math/9707228.

[29]

Kodaka K.,
Full projections, equivalence bimodules and automorphisms of stable algebras of unital ${C}^{*}$-algebras,
J. Operator Theory 37 (1997), no. 2, 357–369.
Google Scholar

[30]

Landsman N. P.,
Mathematical topics between classical and quantum mechanics,
Springer Monogr. Math.,
Springer-Verlag, New York 1998.
Google Scholar

[31]

Lundell A. T. and Weingram S.,
The topology of CW complexes,
Univ. Ser. Higher Math.,
Van Nostrand Reinhold, New York 1969.
Google Scholar

[32]

May J. P.,
The geometry of iterated loop spaces,
Lectures Notes in Math. 271,
Springer-Verlag, Berlin 1972.
Google Scholar

[33]

May J. P.,
${E}_{\mathrm{\infty}}$ spaces, group completions, and permutative categories,
New developments in topology (Oxford 1972),
London Math. Soc. Lecture Note Ser. 11,
Cambridge University Press, London (1974), 61–93.
Google Scholar

[34]

May J. P.,
Classifying spaces and fibrations,
Mem. Amer. Math. Soc. 155 (1975).
Google Scholar

[35]

May J. P.,
The spectra associated to permutative categories,
Topology 17 (1978), no. 3, 225–228.
Google Scholar

[36]

Mingo J. A.,
*K*-theory and multipliers of stable ${C}^{\ast}$-algebras,
Trans. Amer. Math. Soc. 299 (1987), no. 1, 397–411.
Google Scholar

[37]

Nawata N. and Watatani Y.,
Fundamental group of simple ${C}^{*}$-algebras with unique trace,
Adv. Math. 225 (2010), no. 1, 307–318.
Google Scholar

[38]

Nistor V.,
Fields of $\mathrm{AF}$-algebras,
J. Operator Theory 28 (1992), no. 1, 3–25.
Google Scholar

[39]

Rieffel M. A.,
Quantization and ${C}^{\ast}$-algebras,
${C}^{\ast}$-algebras: 1943–1993 (San Antonio 1993),
Contemp. Math. 167,
American Mathematical Society, Providence (1994), 66–97.
Google Scholar

[40]

Rørdam M.,
Classification of nuclear, simple ${C}^{*}$-algebras,
Encyclopaedia Math. Sci. 126,
Springer-Verlag, Berlin 2002.
Google Scholar

[41]

Rørdam M.,
The stable and the real rank of $\mathcal{\mathcal{Z}}$-absorbing ${C}^{*}$-algebras,
Internat. J. Math. 15 (2004), no. 10, 1065–1084.
Google Scholar

[42]

Rosenberg J.,
Continuous-trace algebras from the bundle theoretic point of view,
J. Aust. Math. Soc. Ser. A 47 (1989), no. 3, 368–381.
Google Scholar

[43]

Schochet C.,
The Dixmier-Douady invariant for dummies,
Notices Amer. Math. Soc. 56 (2009), no. 7, 809–816.
Google Scholar

[44]

Schön R.,
Fibrations over a CWh-base,
Proc. Amer. Math. Soc. 62 (1977), no. 1, 165–166.
Google Scholar

[45]

Segal G.,
Classifying spaces and spectral sequences,
Publ. Math. Inst. Hautes Études Sci. 34 (1968), 105–112.
Google Scholar

[46]

Segal G.,
Categories and cohomology theories,
Topology 13 (1974), 293–312.
Google Scholar

[47]

Segal G.,
Topological structures in string theory,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359 (2001), no. 1784, 1389–1398.
Google Scholar

[48]

Strøm A.,
Note on cofibrations,
Math. Scand. 19 (1966), 11–14.
Google Scholar

[49]

Thomsen K.,
Homotopy classes of $*$-homomorphisms between stable ${C}^{*}$-algebras and their multiplier algebras,
Duke Math. J. 61 (1990), no. 1, 67–104.
Google Scholar

[50]

Toms A. S. and Winter W.,
Strongly self-absorbing ${C}^{*}$-algebras,
Trans. Amer. Math. Soc. 359 (2007), no. 8, 3999–4029.
Google Scholar

[51]

Winter W.,
Strongly self-absorbing ${C}^{*}$-algebras are $\mathcal{\mathcal{Z}}$-stable,
J. Noncommut. Geom. 5 (2011), no. 2, 253–264.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.