[1]

Adolphson A.,
Hypergeometric functions and rings generated by monomials,
Duke Math. J. 73 (1994), 269–290.
Google Scholar

[2]

Andrews G. E., Askey R. and Roy R.,
Special functions,
Encyclopedia Math. Appl. 71,
Cambridge University Press, Cambridge 1999.
Google Scholar

[3]

Antipova I. A.,
Inversion of multidimensional Mellin transforms,
Russian Math. Surveys 62 (2007), 977–979.
Google Scholar

[4]

Antipova I. A.,
Inversion of many-dimensional Mellin transforms and solutions of algebraic equations, Sb. Math. 198 (2007), 474–463.
Google Scholar

[5]

Beukers F.,
Algebraic *A*-hypergeometric functions,
Invent. Math. 180 (2010), 589–610.
Google Scholar

[6]

Beukers F.,
Irreducibility of *A*-hypergeometric systems,
Indag. Math. (N.S.) 21 (2011), 30–39.
Google Scholar

[7]

Beukers F.,
Notes on *A*-hypergeometric functions,
Arithmetic and Galois theories of differential equations,
Sémin. Congr. 23,
Société Mathématique de France, Paris (2011), 25–61.
Google Scholar

[8]

Beukers F. and Heckman G.,
Monodromy for the hypergeometric function ${}_{n}F_{n-1}$,
Invent. Math. 95 (1989), 325–354.
Google Scholar

[9]

Chen Y.-H., Yang Y. and Yui N.,
Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds,
J. reine angew. Math. 616 (2008), 167–203.
Google Scholar

[10]

Deligne P. and Mostow G. D.,
Monodromy of hypergeometric functions and non-lattice integral monodromy,
Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5–89.
Google Scholar

[11]

Gelfand I. M., M. I.Graev , Zelevinsky A. V.,
Holonomic systems of equations and series of hypergeometric type (in Russian),
Dokl. Akad. Nauk SSSR 295 (1987), 14–19.
Google Scholar

[12]

Gelfand I. M., Kapranov M. M., Zelevinsky A. V.,
Generalized Euler integrals and *A*-hypergeometric functions,
Adv. Math 84 (1990), 255–271.
Google Scholar

[13]

Gelfand I. M., Kapranov M. M. and Zelevinsky A. V.,
A correction to the paper “Hypergeometric equations and toral manifolds”,
Funct. Anal. Appl. 27 (1993), 295–295.
Google Scholar

[14]

Gelfand I. M., Zelevinsky A. V. and Kapranov M. M.,
Equations of hypergeometric type and Newton polytopes (in Russian),
Dokl. Akad. Nauk SSSR 300 (1988), 529–534.
Google Scholar

[15]

Gelfand I. M., Zelevinsky A. V. and Kapranov M. M.,
Hypergeometric functions and toral manifolds,
Funct. Anal. Appl. 23 (1989), 94–106.
Google Scholar

[16]

Goto Y.,
The monodromy representation of Lauricella’s hypergeometric function ${F}_{C}$,
preprint 2014, http://arxiv.org/abs/1403.1654.

[17]

Hanamura M. and Yoshida M.,
Hodge structure on twisted cohomologies and twisted Riemann inequalities I,
Nagoya Math. J. 154 (1999), 123–139.
Google Scholar

[18]

Haraoka Y. and Ueno Y.,
Rigidity for Appell’s hypergeometric series ${F}_{4}$,
Funkcial. Ekvac. 51 (2008), 149–164.
Google Scholar

[19]

Kaneko J.,
Monodromy group of Appell’s system ${F}_{4}$,
Tokyo J. Math 4 (1981), 35–54.
Google Scholar

[20]

Kato M.,
Appell’s hypergeometric systems ${F}_{2}$ with finite irreducible monodromy groups,
Kyushu J. Math. 54 (2000), 279–305.
Google Scholar

[21]

Kita M. and Yoshida M.,
Intersection theory for twisted cycles,
Math. Nachr. 166 (1994), 287–304;
Intersection theory for twisted cycles II, Math. Nachr. 168 (1994), 171–190.
Google Scholar

[22]

Maclachlan N. W.,
Complex variable theory and transform calculus, 2nd ed.,
Cambridge University Press, Cambridge 1953.
Google Scholar

[23]

Matsumoto K., Sasaki T., Takayama N. and Yoshida M.,
Monodromy of the hypergeometric equation of type $(3,6)$. I,
Duke Math. J. 71 (1993), 403–426.
Google Scholar

[24]

Matsumoto K., Sasaki T., Takayama N. and Yoshida M.,
Monodromy of the hypergeometric equation of type $(3,6)$. II: The unitary reflection group of order ${2}^{9}\cdot {3}^{7}\cdot 5\cdot 7$,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 20 (1993), 617–631.
Google Scholar

[25]

Matsumoto K. and Yoshida M.,
Monodromy of Lauricella’s hypergeometric ${F}_{A}$-system,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 551–577.
Google Scholar

[26]

Mimachi K.,
Intersection numbers for twisted cycles and the connection problem associated with the generalized hypergeometric function ${}_{n+1}F_{n}$,
Int. Math. Res. Not. IMRN 2011 (2011), 1757–1781.
Google Scholar

[27]

Nilsson L.,
Amoebas, discriminants, and hypergeometric functions,
PhD dissertation, Stockholm University 2009.
Google Scholar

[28]

Nørlund N. E.,
Hypergeometric functions,
Acta Math. 94 (1955), 289–349.
Google Scholar

[29]

Picard E.,
Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques,
Ann. Éc. Norm. Supér. (2) 10 (1881), 304–322.
Google Scholar

[30]

Saito M., Sturmfels B. and Takayama N.,
Gröbner deformations of hypergeometric differential equations,
Algorithms Comput. Math. 6,
Springer-Verlag, Berlin 2000.
Google Scholar

[31]

Sasaki T.,
On the finiteness of the monodromy group of the system of hypergeometric differential equations $({F}_{D})$,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 565–573.
Google Scholar

[32]

Schulze M. and Walther U.,
Resonance equals reducibility for *A*-hypergeometric systems,
Algebra Number Theory 6 (2012), 527–537.
Google Scholar

[33]

Smith F. C.,
Relations among the fundamental solutions of the generalized hypergeometric equation when $p=q+1$. Non-logarithmic cases,
Bull. Amer. Math. Soc. 44 (1938), 429–433.
Google Scholar

[34]

Stienstra J.,
GKZ hypergeometric structures,
Arithmetic and geometry around hypergeometric functions,
Progr. Math. 260,
Birkhäuser-Verlag, Basel (2007), 313–371.
Google Scholar

[35]

Takano K.,
Monodromy of the system for Appell’s ${F}_{4}$,
Funkcial. Ekvac. 23 (1980), 97–122.
Google Scholar

[36]

Terada T.,
Fonctions hypergéométriques F1 et fonctions automorphes I,
J. Math. Soc. Japan 35 (1983), 451–475.
Google Scholar

[37]

Yoshida M.,
Hypergeometric functions, my love. Modular interpretations of configuration spaces,
Aspects Math. 32,
Vieweg-Verlag, Wiesbaden 1997.
Google Scholar

[38]

Zhdanov O. N. and Tsikh A. K.,
Studying the multiple Mellin–Barnes integrals by means of multidimensional residues,
Sib. Math. J. 39 (1998), 245–260.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.