Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2016, Issue 718

Issues

Monodromy of A-hypergeometric functions

Frits Beukers
Published Online: 2014-07-19 | DOI: https://doi.org/10.1515/crelle-2014-0054

Abstract

Using Mellin–Barnes integrals we give a method to compute elements of the monodromy group of an A-hypergeometric system of differential equations. The method works under the assumption that the A-hypergeometric system has a basis of solutions consisting of Mellin–Barnes integrals. Hopefully these elements generate the full monodromy group, but this has only been verified in some special cases.

References

  • [1]

    Adolphson A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269–290. Google Scholar

  • [2]

    Andrews G. E., Askey R. and Roy R., Special functions, Encyclopedia Math. Appl. 71, Cambridge University Press, Cambridge 1999. Google Scholar

  • [3]

    Antipova I. A., Inversion of multidimensional Mellin transforms, Russian Math. Surveys 62 (2007), 977–979. Google Scholar

  • [4]

    Antipova I. A., Inversion of many-dimensional Mellin transforms and solutions of algebraic equations, Sb. Math. 198 (2007), 474–463. Google Scholar

  • [5]

    Beukers F., Algebraic A-hypergeometric functions, Invent. Math. 180 (2010), 589–610. Google Scholar

  • [6]

    Beukers F., Irreducibility of A-hypergeometric systems, Indag. Math. (N.S.) 21 (2011), 30–39. Google Scholar

  • [7]

    Beukers F., Notes on A-hypergeometric functions, Arithmetic and Galois theories of differential equations, Sémin. Congr. 23, Société Mathématique de France, Paris (2011), 25–61. Google Scholar

  • [8]

    Beukers F. and Heckman G., Monodromy for the hypergeometric function Fn-1n, Invent. Math. 95 (1989), 325–354. Google Scholar

  • [9]

    Chen Y.-H., Yang Y. and Yui N., Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds, J. reine angew. Math. 616 (2008), 167–203. Google Scholar

  • [10]

    Deligne P. and Mostow G. D., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5–89. Google Scholar

  • [11]

    Gelfand I. M., M. I.Graev , Zelevinsky A. V., Holonomic systems of equations and series of hypergeometric type (in Russian), Dokl. Akad. Nauk SSSR 295 (1987), 14–19. Google Scholar

  • [12]

    Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Generalized Euler integrals and A-hypergeometric functions, Adv. Math 84 (1990), 255–271. Google Scholar

  • [13]

    Gelfand I. M., Kapranov M. M. and Zelevinsky A. V., A correction to the paper “Hypergeometric equations and toral manifolds”, Funct. Anal. Appl. 27 (1993), 295–295. Google Scholar

  • [14]

    Gelfand I. M., Zelevinsky A. V. and Kapranov M. M., Equations of hypergeometric type and Newton polytopes (in Russian), Dokl. Akad. Nauk SSSR 300 (1988), 529–534. Google Scholar

  • [15]

    Gelfand I. M., Zelevinsky A. V. and Kapranov M. M., Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94–106. Google Scholar

  • [16]

    Goto Y., The monodromy representation of Lauricella’s hypergeometric function FC, preprint 2014, http://arxiv.org/abs/1403.1654.

  • [17]

    Hanamura M. and Yoshida M., Hodge structure on twisted cohomologies and twisted Riemann inequalities I, Nagoya Math. J. 154 (1999), 123–139. Google Scholar

  • [18]

    Haraoka Y. and Ueno Y., Rigidity for Appell’s hypergeometric series F4, Funkcial. Ekvac. 51 (2008), 149–164. Google Scholar

  • [19]

    Kaneko J., Monodromy group of Appell’s system F4, Tokyo J. Math 4 (1981), 35–54. Google Scholar

  • [20]

    Kato M., Appell’s hypergeometric systems F2 with finite irreducible monodromy groups, Kyushu J. Math. 54 (2000), 279–305. Google Scholar

  • [21]

    Kita M. and Yoshida M., Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287–304; Intersection theory for twisted cycles II, Math. Nachr. 168 (1994), 171–190. Google Scholar

  • [22]

    Maclachlan N. W., Complex variable theory and transform calculus, 2nd ed., Cambridge University Press, Cambridge 1953. Google Scholar

  • [23]

    Matsumoto K., Sasaki T., Takayama N. and Yoshida M., Monodromy of the hypergeometric equation of type (3,6). I, Duke Math. J. 71 (1993), 403–426. Google Scholar

  • [24]

    Matsumoto K., Sasaki T., Takayama N. and Yoshida M., Monodromy of the hypergeometric equation of type (3,6). II: The unitary reflection group of order 293757, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 20 (1993), 617–631. Google Scholar

  • [25]

    Matsumoto K. and Yoshida M., Monodromy of Lauricella’s hypergeometric FA-system, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 551–577. Google Scholar

  • [26]

    Mimachi K., Intersection numbers for twisted cycles and the connection problem associated with the generalized hypergeometric function Fnn+1, Int. Math. Res. Not. IMRN 2011 (2011), 1757–1781. Google Scholar

  • [27]

    Nilsson L., Amoebas, discriminants, and hypergeometric functions, PhD dissertation, Stockholm University 2009. Google Scholar

  • [28]

    Nørlund N. E., Hypergeometric functions, Acta Math. 94 (1955), 289–349. Google Scholar

  • [29]

    Picard E., Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. Éc. Norm. Supér. (2) 10 (1881), 304–322. Google Scholar

  • [30]

    Saito M., Sturmfels B. and Takayama N., Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math. 6, Springer-Verlag, Berlin 2000. Google Scholar

  • [31]

    Sasaki T., On the finiteness of the monodromy group of the system of hypergeometric differential equations (FD), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 565–573. Google Scholar

  • [32]

    Schulze M. and Walther U., Resonance equals reducibility for A-hypergeometric systems, Algebra Number Theory 6 (2012), 527–537. Google Scholar

  • [33]

    Smith F. C., Relations among the fundamental solutions of the generalized hypergeometric equation when p=q+1. Non-logarithmic cases, Bull. Amer. Math. Soc. 44 (1938), 429–433. Google Scholar

  • [34]

    Stienstra J., GKZ hypergeometric structures, Arithmetic and geometry around hypergeometric functions, Progr. Math. 260, Birkhäuser-Verlag, Basel (2007), 313–371. Google Scholar

  • [35]

    Takano K., Monodromy of the system for Appell’s F4, Funkcial. Ekvac. 23 (1980), 97–122. Google Scholar

  • [36]

    Terada T., Fonctions hypergéométriques F1 et fonctions automorphes I, J. Math. Soc. Japan 35 (1983), 451–475. Google Scholar

  • [37]

    Yoshida M., Hypergeometric functions, my love. Modular interpretations of configuration spaces, Aspects Math. 32, Vieweg-Verlag, Wiesbaden 1997. Google Scholar

  • [38]

    Zhdanov O. N. and Tsikh A. K., Studying the multiple Mellin–Barnes integrals by means of multidimensional residues, Sib. Math. J. 39 (1998), 245–260. Google Scholar

About the article

Received: 2013-06-26

Revised: 2014-03-11

Published Online: 2014-07-19

Published in Print: 2016-09-01


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2016, Issue 718, Pages 183–206, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0054.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Сергей Игоревич Безродных and Sergei Igorevich Bezrodnykh
Успехи математических наук, 2018, Volume 73, Number 6(444), Page 3

Comments (0)

Please log in or register to comment.
Log in