[1]

Andersen H. H. and Lauritzen N.,
Twisted Verma modules,
Studies in memory of Issai Schur,
Progr. Math. 210,
Birkhäuser-Verlag, Boston (2003), 1–26.
Google Scholar

[2]

Andersen H. H. and Stroppel C.,
Twisting functors on *O*,
Represent. Theory 7 (2003), 681–699.
Google Scholar

[3]

Arkhipov S.,
Algebraic construction of contragradient quasi-Verma modules in positive characteristic,
Representation theory of algebraic groups and quantum groups,
Adv. Stud. Pure Math. 40,
Mathematical Society of Japan, Tokyo (2004), 27–68.
Google Scholar

[4]

Bernštein I. N., Gel’fand I. M. and Gel’fand S. I.,
A certain category of *g*-modules,
Funktsional. Anal. i Prilozhen. 10 (1976), no. 2, 1–8.
Google Scholar

[5]

Borho W. and Jantzen J. C.,
Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra,
Invent. Math. 39 (1977), no. 1, 1–53.
Google Scholar

[6]

Cheng S.-J., Mazorchuk V. and Wang W.,
Equivalence of blocks for the general linear Lie superalgebra,
Lett. Math. Phys. 103 (2013), no. 12, 1313–1327.
Google Scholar

[7]

Coulembier K., Somberg P. and Souček V.,
Joseph ideals and harmonic analysis for $\mathrm{osp}(m|2n)$,
Int. Math. Res. Not. IMRN 2014 (2014), 4291–4340.
Google Scholar

[8]

Duflo M.,
Construction of primitive ideals in an enveloping algebra,
Lie groups and their representations (Budapest 1971),
Halsted, New York (1975), 77–93.
Google Scholar

[9]

Duflo M.,
Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple,
Ann. of Math. (2) 105 (1977), no. 1, 107–120.
Google Scholar

[10]

Frisk A. and Mazorchuk V.,
Regular stronly typical blocks of ${\mathcal{\mathcal{O}}}^{\U0001d52e}$,
Comm. Math. Phys. 291 (2009), 533–542.
Google Scholar

[11]

Gorelik M.,
Annihilation theorem and separation theorem for basic classical Lie superalgebras,
J. Amer. Math. Soc. 15 (2002), no. 1, 113–165.
Google Scholar

[12]

Gorelik M.,
Strongly typical representations of the basic classical Lie superalgebras,
J. Amer. Math. Soc. 15 (2002), 167–184.
Google Scholar

[13]

Gorelik M.,
Shapovalov determinants of *Q*-type Lie superalgebras,
Int. Math. Res. Pap. IMRP 2006 (2006), Article ID 96895.
Google Scholar

[14]

Gorelik M. and Grantcharov D.,
Bounded highest weight modules over $\U0001d52e(n)$,
Int. Math. Res. Not. IMRN (2013), 10.1093/imrn/rnt147.
Google Scholar

[15]

Humphreys J. E.,
Representations of semisimple Lie algebras in the BGG category *O*,
Grad. Stud. Math. 94,
American Mathematical Society, Providence 2008.
Google Scholar

[16]

Jantzen J. C.,
Einhüllende Algebren halbeinfacher Lie-Algebren,
Ergeb. Math. Grenzgeb. (3) 3,
Springer-Verlag, Berlin 1983.
Google Scholar

[17]

Kac V.,
Representations of classical Lie superalgebras,
Differential geometrical methods in mathematical physics. II (Bonn 1977),
Lecture Notes in Math. 676,
Springer-Verlag, Berlin (1978), 597–626.
Google Scholar

[18]

Khomenko O. and Mazorchuk V.,
On Arkhipov’s and Enright’s functors,
Math. Z. 249 (2005), no. 2, 357–386.
Google Scholar

[19]

Letzter E. S.,
A bijection of primitive spectra for classical Lie superalgebras of type I,
J. Lond. Math. Soc. (2) 53 (1996), no. 1, 39–49.
Google Scholar

[20]

Mazorchuk V.,
Classification of simple ${\U0001d52e}_{2}$-supermodules,
Tohoku Math. J. (2) 62 (2010), no. 3, 401–426.
Google Scholar

[21]

Mazorchuk V.,
Parabolic category $\mathcal{\mathcal{O}}$ for classical Lie superalgebras,
Advances in Lie superalgebras,
Springer INdAM Ser. 7,
Springer-Verlag, Cham (2014), 149–166.
Google Scholar

[22]

Mazorchuk V. and Miemietz V.,
Cell 2-representations of finitary 2-categories,
Compos. Math. 147 (2011), no. 5, 1519–1545.
Google Scholar

[23]

Mazorchuk V. and Ovsienko S.,
A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra,
J. Math. Kyoto Univ. 45 (2005), no. 4, 711–741.
Google Scholar

[24]

Mazorchuk V. and Stroppel C.,
Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module,
Trans. Amer. Math. Soc. 357 (2005), no. 7, 2939–2973.
Google Scholar

[25]

Mazorchuk V. and Stroppel C.,
On functors associated to a simple root,
J. Algebra 314 (2007), no. 1, 97–128.
Google Scholar

[26]

Musson I. M.,
A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra,
Adv. Math. 91 (1992), no. 2, 252–268.
Google Scholar

[27]

Musson I. M.,
Primitive ideals in the enveloping algebra of the Lie superalgebra $\mathrm{sl}(2,1)$,
J. Algebra 159 (1993), no. 2, 306–331.
Google Scholar

[28]

Musson I. M.,
The enveloping algebra of the Lie superalgebra $\mathrm{osp}(1,2r)$,
Represent. Theory 1 (1997), 405–423.
Google Scholar

[29]

Musson I. M.,
Lie superalgebras and enveloping algebras,
Grad. Stud. Math. 131,
American Mathematical Society, Providence 2012.
Google Scholar

[30]

Penkov I.,
Generic representations of classical Lie superalgebras and their localization,
Monatsh. Math. 118 (1994), no. 3–4, 267–313.
Google Scholar

[31]

Penkov I. and Serganova V.,
Representations of classical Lie superalgebras of type I,
Indag. Math. (N.S.) 3 (1992), no. 4, 419–466.
Google Scholar

[32]

Pinczon G.,
The enveloping algebra of the Lie superalgebra $\mathrm{osp}(1,2)$,
J. Algebra 132 (1990), no. 1, 219–242.
Google Scholar

[33]

Serganova V.,
On representations of the Lie superalgebra $p(n)$,
J. Algebra 258 (2002), no. 2, 615–630.
Google Scholar

[34]

Serganova V.,
Kac–Moody superalgebras and integrability,
Developments and trends in infinite-dimensional Lie theory,
Progr. Math. 288,
Birkhäuser-Verlag, Boston (2011), 169–218.
Google Scholar

[35]

Sergeev A. N.,
The centre of enveloping algebra for Lie superalgebra $Q(n,C)$,
Lett. Math. Phys. 7 (1983), no. 3, 177–179.
Google Scholar

[36]

Taskin M.,
Inner tableau translation property of the weak order and related results,
Proc. Amer. Math. Soc. 141 (2013), no. 3, 837–856.
Google Scholar

[37]

Van der Jeugt J.,
Character formulae for the Lie superalgebra $C(n)$,
Comm. Algebra 19 (1991), no. 1, 199–222.
Google Scholar

[38]

Van der Jeugt J., Hughes J. W. B., King R. C. and Thierry-Mieg J.,
A character formula for singly atypical modules of the Lie superalgebra $\mathrm{sl}(m/n)$,
Comm. Algebra 18 (1990), no. 10, 3453–3480.
Google Scholar

[39]

Vogan, Jr. D.,
Ordering of the primitive spectrum of a semisimple Lie algebra,
Math. Ann. 248 (1980), no. 3, 195–203.
Google Scholar

[40]

Weibel C.,
An introduction to homological algebra,
Cambridge Stud. Adv. Math. 38,
Cambridge University Press, Cambridge 1994.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.