[1]

Borel A. and Serre J.-P.,
Théorèmes de finitude en cohomologie galoisienne,
Comment. Math. Helv. 39 (1964), 111–164.
Google Scholar

[2]

Bosch S., Lütkebohmert W. and Raynaud M.,
Néron models,
Ergeb. Math. Grenzgeb. (3) 21,
Springer-Verlag, Berlin 1990.
Google Scholar

[3]

Breuil C.,
Groupes *p*-divisibles, groupes finis et modules filtrés,
Ann. of Math. (2) 152 (2000), no. 2, 489–549.
Google Scholar

[4]

Cassels J. W. S.,
Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung,
J. reine angew. Math. 211 (1962), 95–112.
Google Scholar

[5]

Coates J.,
Elliptic curves with complex multiplication and Iwasawa theory,
Bull. Lond. Math. Soc. 23 (1991), no. 4, 321–350.
Google Scholar

[6]

Coates J., Fukaya T., Kato K. and Sujatha R.,
Root numbers, Selmer groups, and non-commutative Iwasawa theory,
J. Algebraic Geom. 19 (2010), no. 1, 19–97.
Google Scholar

[7]

Deligne P.,
Courbes elliptiques: formulaire d’après J. Tate,
Modular functions of one variable. IV (Antwerp 1972),
Lecture Notes in Math. 476,
Springer-Verlag, Berlin (1975), 53–73.
Google Scholar

[8]

Dokchitser T. and Dokchitser V.,
Parity of ranks for elliptic curves with a cyclic isogeny,
J. Number Theory 128 (2008), no. 3, 662–679.
Google Scholar

[9]

Dokchitser T. and Dokchitser V.,
Regulator constants and the parity conjecture,
Invent. Math. 178 (2009), no. 1, 23–71.
Google Scholar

[10]

Dokchitser T. and Dokchitser V.,
On the Birch–Swinnerton-Dyer quotients modulo squares,
Ann. of Math. (2) 172 (2010), no. 1, 567–596.
Google Scholar

[11]

Dokchitser T. and Dokchitser V.,
Root numbers and parity of ranks of elliptic curves,
J. reine angew. Math. 658 (2011), 39–64.
Google Scholar

[12]

Dokchitser T. and Dokchitser V.,
Local invariants of isogenous elliptic curves,
Trans. Amer. Math. Soc., to appear.
Google Scholar

[13]

Illusie L.,
Grothendieck’s existence theorem in formal geometry,
Fundamental algebraic geometry,
Math. Surveys Monogr. 123,
American Mathematical Society, Providence (2005), 179–233.
Google Scholar

[14]

Kim B. D.,
The parity conjecture for elliptic curves at supersingular reduction primes,
Compos. Math. 143 (2007), no. 1, 47–72.
Google Scholar

[15]

Kobayashi S.,
The local root number of elliptic curves with wild ramification,
Math. Ann. 323 (2002), no. 3, 609–623.
Google Scholar

[16]

Liedtke C. and Schröer S.,
The Néron model over the Igusa curves,
J. Number Theory 130 (2010), no. 10, 2157–2197.
Google Scholar

[17]

Mazur B. and Rubin K.,
Ranks of twists of elliptic curves and Hilbert’s tenth problem,
Invent. Math. 181 (2010), no. 3, 541–575.
Google Scholar

[18]

Milne J. S.,
On the arithmetic of abelian varieties,
Invent. Math. 17 (1972), 177–190.
Google Scholar

[19]

Nekovář J.,
Selmer complexes,
Astérisque 310,
Société Mathématique de France, Paris 2007.
Google Scholar

[20]

Nekovář J.,
On the parity of ranks of Selmer groups. IV,
Compos. Math. 145 (2009), no. 6, 1351–1359.
Google Scholar

[21]

Nekovář J.,
Some consequences of a formula of Mazur and Rubin for arithmetic local constants,
Algebra Number Theory 7 (2013), no. 5, 1101–1120.
Google Scholar

[22]

Nekovář J.,
Compatibility of arithmetic and algebraic local constants (the case $l\ne p$),
preprint 2014, http://www.math.jussieu.fr/~nekovar/pu/loc.pdf.

[23]

Rohrlich D. E.,
Elliptic curves and the Weil–Deligne group,
Elliptic curves and related topics,
CRM Proc. Lecture Notes 4,
American Mathematical Society, Providence (1994), 125–157.
Google Scholar

[24]

Rohrlich D. E.,
Galois theory, elliptic curves, and root numbers,
Compos. Math. 100 (1996), no. 3, 311–349.
Google Scholar

[25]

Rubin K.,
Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer,
Arithmetic theory of elliptic curves (Cetraro 1997),
Lecture Notes in Math. 1716,
Springer-Verlag, Berlin (1999), 167–234.
Google Scholar

[26]

Schaefer E. F.,
Class groups and Selmer groups,
J. Number Theory 56 (1996), no. 1, 79–114.
Google Scholar

[27]

Serre J.-P.,
Local class field theory,
Algebraic number theory (Brighton 1965),
Thompson, Washington (1967), 128–161.
Google Scholar

[28]

Serre J.-P.,
Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,
Invent. Math. 15 (1972), no. 4, 259–331.
Google Scholar

[29]

Serre J.-P.,
Linear representations of finite groups,
Grad. Texts in Math. 42,
Springer-Verlag, New York 1977.
Google Scholar

[30]

Serre J.-P.,
Local fields,
Grad. Texts in Math. 67,
Springer-Verlag, New York 1979.
Google Scholar

[31]

Serre J.-P.,
Galois cohomology,
Springer Monogr. Math.,
Springer-Verlag, Berlin 2002.
Google Scholar

[32]

Tate J. T.,
The arithmetic of elliptic curves,
Invent. Math. 23 (1974), 179–206.
Google Scholar

[33]

Tate J.,
Algorithm for determining the type of a singular fiber in an elliptic pencil,
Modular functions of one variable. IV (Antwerp 1972),
Lecture Notes in Math. 476,
Springer-Verlag, Berlin (1975), 33–52.
Google Scholar

[34]

Tate J. and Oort F.,
Group schemes of prime order,
Ann. Sci. Éc. Norm. Supér. (4) 3 (1970), 1–21.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.