[1]

Bousfield A. K.,
On the homology spectral sequence of a cosimplicial space,
Amer. J. Math. 109 (1987), no. 2, 361–394.
Google Scholar

[2]

Cartan H. and Eilenberg S.,
Homological algebra,
Princeton University Press, Princeton 1956.
Google Scholar

[3]

Cohen R. L. and Godin V.,
A polarized view of string topology,
Topology, geometry and quantum field theory,
London Math. Soc. Lecture Note Ser. 308,
Cambridge University Press, Cambridge (2004), 127–154.
Google Scholar

[4]

Costello K.,
A dual version of the ribbon graph decomposition of moduli space,
Geom. Topol. 11 (2007), 1637–1652.
Google Scholar

[5]

Costello K.,
Topological conformal field theories and Calabi–Yau categories,
Adv. Math. 210 (2007), no. 1, 165–214.
Google Scholar

[6]

Doi Y.,
Homological coalgebra,
J. Math. Soc. Japan 33 (1981), no. 1, 31–50.
Google Scholar

[7]

Egas D.,
Comparing fat graph models of moduli space,
in preparation.
Google Scholar

[8]

Egas D. and Kupers A.,
Comparing fat graph models of moduli space and their compactifications,
preprint 2014.
Google Scholar

[9]

Félix Y. and Thomas J.-C.,
Rational BV-algebra in string topology,
Bull. Soc. Math. France 136 (2008), no. 2, 311–327.
Google Scholar

[10]

Fresse B.,
Koszul duality of operads and homology of partition posets,
Homotopy theory. Relations with algebraic geometry, group cohomology, and algebraic K-theory,
Contemp. Math. 346,
American Mathematical Society, Providence (2004), 115–215.
Google Scholar

[11]

Fresse B.,
Modules over operads and functors,
Lecture Notes in Math. 1967,
Springer-Verlag, Berlin 2009.
Google Scholar

[12]

Godin V.,
Higher string topology operations,
preprint 2007, http://arxiv.org/abs/0711.4859.

[13]

Godin V.,
The unstable integral homology of the mapping class groups of a surface with boundary,
Math. Ann. 337 (2007), no. 1, 15–60.
Google Scholar

[14]

Goodwillie T. G.,
A remark on the homology of cosimplicial spaces,
J. Pure Appl. Algebra 127 (1998), no. 2, 167–175.
Google Scholar

[15]

Jardine J. F.,
Cosimplicial spaces and cocycles,
preprint 2012, http://www.math.uwo.ca/~jardine/papers/preprints/cosimp5.pdf.

[16]

Jones J. D. S.,
Cyclic homology and equivariant homology,
Invent. Math. 87 (1987), no. 2, 403–423.
Google Scholar

[17]

Klamt A.,
Natural operations on the Hochschild complex of commutative Frobenius algebras via the complex of looped diagrams,
preprint 2013, http://arxiv.org/abs/1309.4997.

[18]

Klamt A.,
The complex of formal operations on the Hochschild chains of commutative algebras,
preprint 2013, http://arxiv.org/abs/1309.7882.

[19]

Klamt A.,
The complex of looped diagrams and natural operations on Hochschid homology,
PhD thesis, University of Copenhagen, 2013, http://www.math.ku.dk/noter/filer/phd13ak.pdf.

[20]

Kock J.,
Frobenius algebras and 2D topological quantum field theories,
London Math. Soc. Stud. Texts 59,
Cambridge University Press, Cambridge 2004.
Google Scholar

[21]

Kontsevich M. and Soibelman Y.,
Notes on ${A}_{\mathrm{\infty}}$-algebras, ${A}_{\mathrm{\infty}}$-categories and non-commutative geometry,
Homological mirror symmetry,
Lecture Notes in Phys. 757,
Springer-Verlag, Berlin (2009), 153–219.
Google Scholar

[22]

Lambrechts P. and Stanley D.,
Poincaré duality and commutative differential graded algebras,
Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 495–509.
Google Scholar

[23]

Lauda A. D. and Pfeiffer H.,
Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras,
Topology Appl. 155 (2008), no. 7, 623–666.
Google Scholar

[24]

Loday J.-L.,
Cyclic homology, 2nd ed.,
Grundlehren Math. Wiss. 301,
Springer-Verlag, Berlin 1998.
Google Scholar

[25]

Loday J.-L. and Valette B.,
Algebraic operads,
Grundlehren Math. Wiss. 346,
Springer-Verlag, Berlin 2012.
Google Scholar

[26]

Macdonald I.,
Symmetric functions and Hall polynomials, 2nd ed.,
Oxford Math. Monogr.,
Oxford University Press, Oxford 1995.
Google Scholar

[27]

Mac Lane S.,
Categorical algebra,
Bull. Amer. Math. Soc. 71 (1965), 40–106.
Google Scholar

[28]

May J. P.,
Simplicial objects in algebraic topology,
Chicago Lectures Math.,
University of Chicago Press, Chicago 1992.
Google Scholar

[29]

Nest R. and Tsygan B.,
On the cohomology ring of an algebra,
Advances in geometry,
Progr. Math. 172,
Birkhäuser-Verlag, Boston (1999), 337–370.
Google Scholar

[30]

Penner R. C.,
Decorated Teichmüller theory of bordered surfaces,
Comm. Anal. Geom. 12 (2004), no. 4, 793–820.
Google Scholar

[31]

Penner R. C.,
Lambda lengths,
preprint 2006, http://www.ctqm.au.dk/research/MCS/lambdalengths.pdf.

[32]

Pirashvili T.,
Hodge decomposition for higher order Hochschild homology,
Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), no. 2, 151–179.
Google Scholar

[33]

Stasheff J.,
Homotopy associativity of *H*-spaces. I, II,
Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.
Google Scholar

[34]

Tamanoi H.,
Stable string operations are trivial,
Int. Math. Res. Not. IMRN 2009 (2009), no. 24, 4642–4685.
Google Scholar

[35]

Tradler T. and Zeinalian M.,
On the cyclic Deligne conjecture,
J. Pure Appl. Algebra 204 (2006), no. 2, 280–299.
Google Scholar

[36]

Wahl N. and Westerland C.,
Hochschild homology of structured algebras,
preprint 2011, http://arxiv.org/abs/1110.0651.

[37]

Weibel C. A.,
An introduction to homological algebra,
Cambridge Stud. Adv. Math. 38,
Cambridge University Press, Cambridge 1994.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.