Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2016, Issue 720

Issues

Universal operations in Hochschild homology

Nathalie Wahl
Published Online: 2014-07-09 | DOI: https://doi.org/10.1515/crelle-2014-0037

Abstract

We provide a general method for finding all natural operations on the Hochschild complex of -algebras, where is any algebraic structure encoded in a prop with multiplication, as for example the prop of Frobenius, commutative or A-algebras. We show that the chain complex of all such natural operations is approximated by a certain chain complex of formal operations, for which we provide an explicit model that we can calculate in a number of cases. When encodes the structure of open topological conformal field theories, we identify this last chain complex, up quasi-isomorphism, with the moduli space of Riemann surfaces with boundaries, thus establishing that the operations constructed by Costello and Kontsevich–Soibelman via different methods identify with all formal operations. When encodes open topological quantum field theories (or symmetric Frobenius algebras) our chain complex identifies with Sullivan diagrams, thus showing that operations constructed by Tradler–Zeinalian, again by different methods, account for all formal operations. As an illustration of the last result we exhibit two infinite families of non-trivial operations and use these to produce non-trivial higher string topology operations, which had so far been elusive.

References

  • [1]

    Bousfield A. K., On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361–394. Google Scholar

  • [2]

    Cartan H. and Eilenberg S., Homological algebra, Princeton University Press, Princeton 1956. Google Scholar

  • [3]

    Cohen R. L. and Godin V., A polarized view of string topology, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser. 308, Cambridge University Press, Cambridge (2004), 127–154. Google Scholar

  • [4]

    Costello K., A dual version of the ribbon graph decomposition of moduli space, Geom. Topol. 11 (2007), 1637–1652. Google Scholar

  • [5]

    Costello K., Topological conformal field theories and Calabi–Yau categories, Adv. Math. 210 (2007), no. 1, 165–214. Google Scholar

  • [6]

    Doi Y., Homological coalgebra, J. Math. Soc. Japan 33 (1981), no. 1, 31–50. Google Scholar

  • [7]

    Egas D., Comparing fat graph models of moduli space, in preparation. Google Scholar

  • [8]

    Egas D. and Kupers A., Comparing fat graph models of moduli space and their compactifications, preprint 2014. Google Scholar

  • [9]

    Félix Y. and Thomas J.-C., Rational BV-algebra in string topology, Bull. Soc. Math. France 136 (2008), no. 2, 311–327. Google Scholar

  • [10]

    Fresse B., Koszul duality of operads and homology of partition posets, Homotopy theory. Relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math. 346, American Mathematical Society, Providence (2004), 115–215. Google Scholar

  • [11]

    Fresse B., Modules over operads and functors, Lecture Notes in Math. 1967, Springer-Verlag, Berlin 2009. Google Scholar

  • [12]

    Godin V., Higher string topology operations, preprint 2007, http://arxiv.org/abs/0711.4859.

  • [13]

    Godin V., The unstable integral homology of the mapping class groups of a surface with boundary, Math. Ann. 337 (2007), no. 1, 15–60. Google Scholar

  • [14]

    Goodwillie T. G., A remark on the homology of cosimplicial spaces, J. Pure Appl. Algebra 127 (1998), no. 2, 167–175. Google Scholar

  • [15]

    Jardine J. F., Cosimplicial spaces and cocycles, preprint 2012, http://www.math.uwo.ca/~jardine/papers/preprints/cosimp5.pdf.

  • [16]

    Jones J. D. S., Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. Google Scholar

  • [17]

    Klamt A., Natural operations on the Hochschild complex of commutative Frobenius algebras via the complex of looped diagrams, preprint 2013, http://arxiv.org/abs/1309.4997.

  • [18]

    Klamt A., The complex of formal operations on the Hochschild chains of commutative algebras, preprint 2013, http://arxiv.org/abs/1309.7882.

  • [19]

    Klamt A., The complex of looped diagrams and natural operations on Hochschid homology, PhD thesis, University of Copenhagen, 2013, http://www.math.ku.dk/noter/filer/phd13ak.pdf.

  • [20]

    Kock J., Frobenius algebras and 2D topological quantum field theories, London Math. Soc. Stud. Texts 59, Cambridge University Press, Cambridge 2004. Google Scholar

  • [21]

    Kontsevich M. and Soibelman Y., Notes on A-algebras, A-categories and non-commutative geometry, Homological mirror symmetry, Lecture Notes in Phys. 757, Springer-Verlag, Berlin (2009), 153–219. Google Scholar

  • [22]

    Lambrechts P. and Stanley D., Poincaré duality and commutative differential graded algebras, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 495–509. Google Scholar

  • [23]

    Lauda A. D. and Pfeiffer H., Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras, Topology Appl. 155 (2008), no. 7, 623–666. Google Scholar

  • [24]

    Loday J.-L., Cyclic homology, 2nd ed., Grundlehren Math. Wiss. 301, Springer-Verlag, Berlin 1998. Google Scholar

  • [25]

    Loday J.-L. and Valette B., Algebraic operads, Grundlehren Math. Wiss. 346, Springer-Verlag, Berlin 2012. Google Scholar

  • [26]

    Macdonald I., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., Oxford University Press, Oxford 1995. Google Scholar

  • [27]

    Mac Lane S., Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106. Google Scholar

  • [28]

    May J. P., Simplicial objects in algebraic topology, Chicago Lectures Math., University of Chicago Press, Chicago 1992. Google Scholar

  • [29]

    Nest R. and Tsygan B., On the cohomology ring of an algebra, Advances in geometry, Progr. Math. 172, Birkhäuser-Verlag, Boston (1999), 337–370. Google Scholar

  • [30]

    Penner R. C., Decorated Teichmüller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 793–820. Google Scholar

  • [31]

    Penner R. C., Lambda lengths, preprint 2006, http://www.ctqm.au.dk/research/MCS/lambdalengths.pdf.

  • [32]

    Pirashvili T., Hodge decomposition for higher order Hochschild homology, Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), no. 2, 151–179. Google Scholar

  • [33]

    Stasheff J., Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312. Google Scholar

  • [34]

    Tamanoi H., Stable string operations are trivial, Int. Math. Res. Not. IMRN 2009 (2009), no. 24, 4642–4685. Google Scholar

  • [35]

    Tradler T. and Zeinalian M., On the cyclic Deligne conjecture, J. Pure Appl. Algebra 204 (2006), no. 2, 280–299. Google Scholar

  • [36]

    Wahl N. and Westerland C., Hochschild homology of structured algebras, preprint 2011, http://arxiv.org/abs/1110.0651.

  • [37]

    Weibel C. A., An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge 1994. Google Scholar

About the article

Received: 2013-04-30

Revised: 2014-03-11

Published Online: 2014-07-09

Published in Print: 2016-11-01


The author was supported by the Danish National Sciences Research Council (DNSRC) and the European Research Council (ERC), as well as by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2016, Issue 720, Pages 81–127, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0037.

Export Citation

© 2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in