[1]

Berman S. and Billig Y.,
Irreducible representations for toroidal Lie algebras,
J. Algebra 221 (1999), 188–231.
Google Scholar

[2]

Billig Y.,
Jet modules,
Canad. J. Math. 59 (2007), 712–729.
Google Scholar

[3]

Billig Y. and Futorny V.,
Classification of simple cuspidal modules for solenoidal Lie algebras,
preprint 2013, http://arxiv.org/abs/1306.5478.

[4]

Billig Y. and Futorny V.,
Representations of Lie algebra of vector fields on a torus and chiral de Rham complex,
Trans. Amer. Math. Soc. 366 (2014), no. 9, 4697–4731.
Google Scholar

[5]

Billig Y. and Zhao K.,
Weight modules over exp-polynomial Lie algebras,
J. Pure Appl. Algebra 191 (2004), 23–42.
Google Scholar

[6]

Conley C. H.,
Bounded length 3 representations of the Virasoro Lie algebra,
Int. Math. Res. Not. IMRN 2001 (2001), no. 12, 609–628.
Google Scholar

[7]

Conley C. H. and Martin C.,
Annihilators of tensor density modules,
J. Algebra 312 (2007), 495–526.
Google Scholar

[8]

Eswara Rao S.,
Irreducible representations of the Lie algebra of the diffeomorphisms of a *d*-dimensional torus,
J. Algebra 182 (1996), 401–421.
Google Scholar

[9]

Eswara Rao S.,
Partial classification of modules for Lie algebra of diffeomorphisms of *d*-dimensional torus,
J. Math. Phys. 45 (2004), no. 8, 3322–3333.
Google Scholar

[10]

Feigin B. L. and Fuks D. B.,
Homology of the Lie algebra of vector fields on the line,
Funct. Anal. Appl. 14 (1980), 201–212.
Google Scholar

[11]

Fuks D. B.,
Cohomology of infinite-dimensional Lie algebras,
Contemp. Soviet Math.,
Consultants Bureau, New York 1986.
Google Scholar

[12]

Germoni J.,
On the classification of admissible representations of the Virasoro algebra,
Lett. Math. Phys. 55 (2001), 169–177.
Google Scholar

[13]

Guo X., Liu G. and Zhao K.,
Irreducible Harish-Chandra modules over extended Witt algebras,
Ark. Mat. 52 (2014), no. 1, 99–112.
Google Scholar

[14]

Guo X. and Zhao K.,
Irreducible weight modules over Witt algebras,
Proc. Amer. Math. Soc. 139 (2011), 2367–2373.
Google Scholar

[15]

Kac V. G.,
Some problems of infinite-dimensional Lie algebras and their representations,
Lie algebras and related topics,
Lecture Notes in Math. 933,
Springer-Verlag, Berlin (1982), 117–126.
Google Scholar

[16]

Kaplansky I.,
The Virasoro algebra,
Comm. Math. Phys. 86 (1982), 49–54.
Google Scholar

[17]

Kaplansky I. and Santharoubane L. J.,
Harish-Chandra modules over the Virasoro algebra,
Infinite dimensional groups with applications,
Math. Sci. Res. Inst. Publ. 4,
Springer-Verlag, Berlin (1985), 217–231.
Google Scholar

[18]

Liu G., Lu R. and Zhao K.,
A class of simple weight Virasoro modules,
preprint 2012, http://arxiv.org/abs/1211.0998.

[19]

Lu R. and Zhao K.,
Classification of irreducible weight modules over higher rank Virasoro algebras,
Adv. Math. 206 (2006), 630–656.
Google Scholar

[20]

Martin C. and Piard A.,
Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac,
Comm. Math. Phys. 137 (1991), 109–132.
Google Scholar

[21]

Martin C. and Piard A.,
Classification of the indecomposable bounded admissible modules over the Virasoro Lie algebra with weightspaces of dimension not exceeding two,
Comm. Math. Phys. 150 (1992), 465–493.
Google Scholar

[22]

Mathieu O.,
Classification of Harish-Chandra modules over the Virasoro algebra,
Invent. Math. 107 (1992), 225–234.
Google Scholar

[23]

Mazorchuk V. and Zhao K.,
Supports of weight modules over Witt algebras,
Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 155–170.
Google Scholar

[24]

Rudakov A. N.,
Irreducible representations of infinite-dimensional Lie algebras of Cartan type,
Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 835–866.
Google Scholar

[25]

Shen G.,
Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules,
Sci. Sinica Ser. A 29 (1986), 570–581.
Google Scholar

[26]

Su Y.,
Simple modules over the high rank Virasoro algebras,
Comm. Algebra 29 (2001), 2067–2080.
Google Scholar

[27]

Su Y.,
Classification of Harish-Chandra modules over the higher rank Virasoro algebras,
Comm. Math. Phys. 240 (2003), 539–551.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.