Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2016, Issue 720

Issues

Classification of irreducible representations of Lie algebra of vector fields on a torus

Yuly Billig / Vyacheslav Futorny
Published Online: 2014-08-19 | DOI: https://doi.org/10.1515/crelle-2014-0059

Abstract

We solve a long standing problem of the classification of all simple modules with finite-dimensional weight spaces over Lie algebra of vector fields on n-dimensional torus for any n. This generalizes the classical result of O.Mathieu on simple weight modules for the Virasoro algebra (n=1). Every such module is either of a highest weight type or is a quotient of a module of tensor fields on a torus, which was conjectured by Eswara Rao.

References

  • [1]

    Berman S. and Billig Y., Irreducible representations for toroidal Lie algebras, J. Algebra 221 (1999), 188–231. Google Scholar

  • [2]

    Billig Y., Jet modules, Canad. J. Math. 59 (2007), 712–729. Google Scholar

  • [3]

    Billig Y. and Futorny V., Classification of simple cuspidal modules for solenoidal Lie algebras, preprint 2013, http://arxiv.org/abs/1306.5478.

  • [4]

    Billig Y. and Futorny V., Representations of Lie algebra of vector fields on a torus and chiral de Rham complex, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4697–4731. Google Scholar

  • [5]

    Billig Y. and Zhao K., Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004), 23–42. Google Scholar

  • [6]

    Conley C. H., Bounded length 3 representations of the Virasoro Lie algebra, Int. Math. Res. Not. IMRN 2001 (2001), no. 12, 609–628. Google Scholar

  • [7]

    Conley C. H. and Martin C., Annihilators of tensor density modules, J. Algebra 312 (2007), 495–526. Google Scholar

  • [8]

    Eswara Rao S., Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimensional torus, J. Algebra 182 (1996), 401–421. Google Scholar

  • [9]

    Eswara Rao S., Partial classification of modules for Lie algebra of diffeomorphisms of d-dimensional torus, J. Math. Phys. 45 (2004), no. 8, 3322–3333. Google Scholar

  • [10]

    Feigin B. L. and Fuks D. B., Homology of the Lie algebra of vector fields on the line, Funct. Anal. Appl. 14 (1980), 201–212. Google Scholar

  • [11]

    Fuks D. B., Cohomology of infinite-dimensional Lie algebras, Contemp. Soviet Math., Consultants Bureau, New York 1986. Google Scholar

  • [12]

    Germoni J., On the classification of admissible representations of the Virasoro algebra, Lett. Math. Phys. 55 (2001), 169–177. Google Scholar

  • [13]

    Guo X., Liu G. and Zhao K., Irreducible Harish-Chandra modules over extended Witt algebras, Ark. Mat. 52 (2014), no. 1, 99–112. Google Scholar

  • [14]

    Guo X. and Zhao K., Irreducible weight modules over Witt algebras, Proc. Amer. Math. Soc. 139 (2011), 2367–2373. Google Scholar

  • [15]

    Kac V. G., Some problems of infinite-dimensional Lie algebras and their representations, Lie algebras and related topics, Lecture Notes in Math. 933, Springer-Verlag, Berlin (1982), 117–126. Google Scholar

  • [16]

    Kaplansky I., The Virasoro algebra, Comm. Math. Phys. 86 (1982), 49–54. Google Scholar

  • [17]

    Kaplansky I. and Santharoubane L. J., Harish-Chandra modules over the Virasoro algebra, Infinite dimensional groups with applications, Math. Sci. Res. Inst. Publ. 4, Springer-Verlag, Berlin (1985), 217–231. Google Scholar

  • [18]

    Liu G., Lu R. and Zhao K., A class of simple weight Virasoro modules, preprint 2012, http://arxiv.org/abs/1211.0998.

  • [19]

    Lu R. and Zhao K., Classification of irreducible weight modules over higher rank Virasoro algebras, Adv. Math. 206 (2006), 630–656. Google Scholar

  • [20]

    Martin C. and Piard A., Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac, Comm. Math. Phys. 137 (1991), 109–132. Google Scholar

  • [21]

    Martin C. and Piard A., Classification of the indecomposable bounded admissible modules over the Virasoro Lie algebra with weightspaces of dimension not exceeding two, Comm. Math. Phys. 150 (1992), 465–493. Google Scholar

  • [22]

    Mathieu O., Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math. 107 (1992), 225–234. Google Scholar

  • [23]

    Mazorchuk V. and Zhao K., Supports of weight modules over Witt algebras, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 155–170. Google Scholar

  • [24]

    Rudakov A. N., Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 835–866. Google Scholar

  • [25]

    Shen G., Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules, Sci. Sinica Ser. A 29 (1986), 570–581. Google Scholar

  • [26]

    Su Y., Simple modules over the high rank Virasoro algebras, Comm. Algebra 29 (2001), 2067–2080. Google Scholar

  • [27]

    Su Y., Classification of Harish-Chandra modules over the higher rank Virasoro algebras, Comm. Math. Phys. 240 (2003), 539–551. Google Scholar

About the article

Received: 2013-10-15

Published Online: 2014-08-19

Published in Print: 2016-11-01


Funding Source: Conselho Nacional de Desenvolvimento Científico e Tecnológico

Award identifier / Grant number: 301743/2007-0

Funding Source: Fundação de Amparo à Pesquisa do Estado de São Paulo

Award identifier / Grant number: 2010/50347-9

Award identifier / Grant number: 2012/14961-0

The first author is supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada and by the Fapesp grant 2012/14961-0. The second author is supported in part by the CNPq grant 301743/2007-0 and by the Fapesp grant 2010/50347-9.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2016, Issue 720, Pages 199–216, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0059.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yuly Billig and Jonathan Nilsson
Journal of Pure and Applied Algebra, 2018
[2]
Vyacheslav Futorny, Dessislava H. Kochloukova, and Said N. Sidki
Mathematische Zeitschrift, 2018
[3]
Vyacheslav Futorny, Genqiang Liu, Rencai Lu, and Kaiming Zhao
Journal of Algebra, 2018
[4]
Xiangqian Guo, Xuewen Liu, and Zhen Wei
Communications in Algebra, 2017, Volume 45, Number 2, Page 666
[5]
Chengkang Xu
Journal of Mathematical Physics, 2016, Volume 57, Number 10, Page 101702

Comments (0)

Please log in or register to comment.
Log in