[1]

Eftekhary E.,
Longitude Floer homology and the Whitehead double,
Algebr. Geom. Topol. 5 (2005), 1389–1418, electronic.
Google Scholar

[2]

Eftekhary E.,
Floer homology and splicing knot complements,
preprint 2008, http://arxiv.org/abs/0802.2874.

[3]

Ghiggini P.,
Knot Floer homology detects genus-one fibred knots,
Amer. J. Math. 130 (2008), no. 5, 1151–1169.
Google Scholar

[4]

Hanselman J.,
Splicing integer framed knot complements and bordered Heegaard Floer homology,
preprint 2014, http://arxiv.org/abs/1409.1912.

[5]

Hedden M.,
Knot Floer homology of Whitehead doubles,
Geom. Topol. 11 (2007), 2277–2338.
Google Scholar

[6]

Hedden M., Livingston C. and Ruberman D.,
Topologically slice knots with nontrivial Alexander polynomial,
Adv. Math. 231 (2012), no. 2, 913–939.
Google Scholar

[7]

Hom J.,
Bordered Heegaard Floer homology and the tau-invariant of cable knots,
J. Topol. (2013), 10.1112/jtopol/jtt030.
Google Scholar

[8]

Hom J.,
The knot Floer complex and the smooth concordance group,
Comment. Math. Helv. 89 (2014), no. 3, 537–570.
Google Scholar

[9]

Levine A. S.,
Knot doubling operators and bordered Heegaard Floer homology,
J. Topol. 5 (2012), no. 3, 651–712.
CrossrefGoogle Scholar

[10]

Lipshitz R., Ozsváth P. and Thurston D.,
Bordered Heegaard Floer homology,
preprint 2009, http://arxiv.org/abs/0810.0687.

[11]

Lipshitz R., Ozsváth P. and Thurston D.,
Bimodules in bordered Heegaard Floer homology,
preprint 2010, http://arxiv.org/abs/1003.0598.

[12]

Lipshitz R., Ozsváth P. and Thurston D.,
Heegaard Floer homology as morphism spaces,
preprint 2011, http://arxiv.org/abs/1005.1248.

[13]

Morgan J. and Tian G.,
Ricci flow and the Poincaré conjecture,
Clay Math. Monogr. 3,
American Mathematical Society, Providence 2007.
Google Scholar

[14]

Ni Y.,
Knot Floer homology detects fibered knots,
Invent. Math. 170 (2007), no. 3, 577–608.
Google Scholar

[15]

Ozsváth P. and Szabó Z.,
Knot Floer homology and the four-ball genus,
Geom. Topol. 7 (2003), 615–639, electronic.
Google Scholar

[16]

Ozsváth P. and Szabó Z.,
Heegaard diagrams and holomorphic disks,
Different faces of geometry,
Int. Math. Ser. (N. Y.) 3,
Kluwer/Plenum, New York (2004), 301–348.
Google Scholar

[17]

Ozsváth P. and Szabó Z.,
Holomorphic disks and genus bounds,
Geom. Topol. 8 (2004), 311–334, electronic.
Google Scholar

[18]

Ozsváth P. and Szabó Z.,
Holomorphic disks and knot invariants,
Adv. Math. 186 (2004), no. 1, 58–116.
Google Scholar

[19]

Ozsváth P. and Szabó Z.,
Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245.
Google Scholar

[20]

Ozsváth P. and Szabó Z.,
On knot Floer homology and lens space surgeries,
Topology 44 (2005), no. 6, 1281–1300.
Google Scholar

[21]

Ozsváth P. and Szabó Z.,
On the Heegaard Floer homology of branched double-covers,
Adv. Math. 194 (2005), no. 1, 1–33.
Google Scholar

[22]

Ozsváth P. and Szabó Z.,
Lectures on Heegaard Floer homology,
Floer homology, Gauge theory, and low-dimensional topology (Budapest 2004),
Clay Math. Proc. 5,
American Mathematical Society, Providence (2006), 29–70.
Google Scholar

[23]

Perelman G.,
The entropy formula for the Ricci flow and its geometric applications,
preprint 2002, http://arxiv.org/abs/math/0211159.

[24]

Perelman G.,
Ricci flow with surgery on three-manifolds,
preprint 2003, http://arxiv.org/abs/math/0303109.

[25]

Rasmussen J. A.,
Floer homology and knot complements,
Ph.D. thesis, Harvard University, 2003.
Google Scholar

[26]

Rustamov R.,
On plumbed *L*-spaces,
preprint 2005, http://arxiv.org/abs/math/0505349.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.