[1]

M. F. Atiyah,
Power operations in K-theory,
Quart. J. Math. 17 (1966), 165–193.
CrossrefGoogle Scholar

[2]

P. Baum, W. Fulton and R. MacPherson,
Riemann–Roch for singular varieties,
Publ. Math. Inst. Hautes Études Sci. 45 (1975), 101–145.
CrossrefGoogle Scholar

[3]

P. Baum, W. Fulton and G. Quart,
Lefschetz–Riemann–Roch for singular varieties,
Acta Math. 143 (1979), no. 3–4, 193–211.
Google Scholar

[4]

L. Borisov and A. Libgober,
Elliptic genera of singular varieties, orbifold elliptic genus and chiral de Rham complex,
Mirror symmetry IV (Montreal 2000),
AMS/IP Stud. Adv. Math. 33,
American Mathematical Society, Providence (2002), 325–342.
Google Scholar

[5]

J. P. Brasselet, J. Schürmann and S. Yokura,
Hirzebruch classes and motivic Chern classes of singular spaces,
J. Topol. Anal. 2 (2010), no. 1, 1–55.
CrossrefWeb of ScienceGoogle Scholar

[6]

S. E. Cappell, L. Maxim, T. Ohmoto, J. Schn̈urmann and S. Yokura,
Characteristic classes of Hilbert schemes of points via symmetric products,
Geom. Topol. 17 (2013), no. 2, 1165–1198.
CrossrefGoogle Scholar

[7]

S. E. Cappell, L. Maxim, J. Schürmann and J. L. Shaneson,
Equivariant characteristic classes of complex algebraic varieties,
Comm. Pure Appl. Math. 65 (2012), no. 12, 1722–1769.
Google Scholar

[8]

S. E. Cappell, L. Maxim and J. L. Shaneson,
Hodge genera of algebraic varieties. I,
Comm. Pure Appl. Math. 61 (2008), no. 3, 422–449.
Google Scholar

[9]

S. E. Cappell and J. L. Shaneson,
Stratifiable maps and topological invariants,
J. Amer. Math. Soc. 4 (1991), no. 3, 521–551.
CrossrefGoogle Scholar

[10]

P. Du Bois,
Complexe de De Rham filtré d’une variété singulière,
Bull. Soc. Math. France 109 (1981), 41–81.
Google Scholar

[11]

W. Fulton and S. Lang,
Riemann–Roch algebra,
Grundlehren Math. Wiss. 277,
Springer, New York 1985.
Google Scholar

[12]

F. Hirzebruch,
Topological methods in algebraic geometry,
Springer, Berlin 1966.
Google Scholar

[13]

M. Kapranov,
The elliptic curve in the *S*-duality theory and Eisenstein series for Kac–Moody groups,
preprint (2000), http://arxiv.org/abs/math/0001005.

[14]

S. Kovács and K. Schwede,
Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities,
Topology of stratified spaces,
Math. Sci. Res. Inst. Publ. 58,
Cambridge University Press, Cambridge (2011), 51–94.
Google Scholar

[15]

E. Looijenga,
Motivic measures,
Séminaire Bourbaki. Volume 1999/2000. Exposés 865–879,
Astérisque 276,
Société Mathématique de France, Paris (2002), 267–297.
Google Scholar

[16]

I. G. Macdonald,
The Poincaré polynomial of a symmetric product,
Proc. Cambridge Philos. Soc. 58 (1962), 563–568.
Google Scholar

[17]

R. MacPherson,
Chern classes for singular algebraic varieties,
Ann. of Math. (2) 100 (1974), 423–432.
CrossrefGoogle Scholar

[18]

B. Moonen,
Das Lefschetz–Riemann–Roch Theorem für singuläre Varietäten,
Bonner Math. Schriften 106 (1978).
Google Scholar

[19]

L. Maxim, M. Saito and J. Schürmann,
Symmetric products of mixed Hodge modules,
J. Math. Pures Appl. (9) 96 (2011), no. 5, 462–483.
Web of ScienceCrossrefGoogle Scholar

[20]

L. Maxim and J. Schürmann,
Hirzebruch invariants of symmetric products,
Topology of algebraic varieties and singularities,
Contemp. Math. 538,
American Mathematical Society, Providence (2011), 163–177.
Google Scholar

[21]

L. Maxim and J. Schürmann,
Twisted genera of symmetric products,
Selecta Math. (N.S.) 18 (2012), no. 1, 283–317.
Google Scholar

[22]

M. Nori,
The Hirzebruch–Riemann–Roch theorem,
Michigan Math. J. 48 (2000), 473–482.
Google Scholar

[23]

T. Ohmoto,
Generating functions for orbifold Chern classes I: Symmetric products,
Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 2, 423–438.
CrossrefGoogle Scholar

[24]

M. Saito,
Modules de Hodge polarisables,
Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995.
CrossrefGoogle Scholar

[25]

M. Saito,
Induced *D*-modules and differential complexes,
Bull. Soc. Math. France 117 (1989), 361–387.
Google Scholar

[26]

M. Saito,
Mixed Hodge modules,
Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.
CrossrefGoogle Scholar

[27]

M. Saito,
Mixed Hodge complexes on algebraic varieties,
Math. Ann. 316 (2000), no. 2, 283–331.
Google Scholar

[28]

J. Schürmann,
A general construction of partial Grothendieck transformations,
preprint (2003), http://arxiv.org/abs/math/0209299.

[29]

J. Schürmann,
Characteristic classes of mixed Hodge modules,
Topology of stratified spaces,
Math. Sci. Res. Inst. Publ. 58,
Cambridge University Press, Cambridge (2011), 419–470.
Google Scholar

[30]

J. Schürmann and S. Yokura,
A survey of characteristic classes of singular spaces,
Singularity theory. Proceedings of the 2005 Marseille singularity school and conference (Marseille 2005),
World Scientific, Singapore (2007), 865–952.,
Google Scholar

[31]

D. Yau,
Lambda-rings,
World Scientific, Hackensack 2010.
Google Scholar

[32]

S. Yokura,
Motivic characteristic classes,
Topology of stratified spaces,
Math. Sci. Res. Inst. Publ. 58,
Cambridge University Press, Cambridge (2011), 375–418.
Google Scholar

[33]

D. Zagier,
Equivariant Pontrjagin classes and applications to orbit spaces. Applications of the *G*-signature theorem to transformation groups, symmetric products and number theory,
Lecture Notes in Math. 290, Springer, Berlin 1972.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.