Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2017, Issue 728

Issues

Characteristic classes of symmetric products of complex quasi-projective varieties

Sylvain E. Cappell / Laurentiu Maxim / Jörg Schürmann / Julius L. Shaneson / Shoji Yokura
  • Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, 21-35 Korimoto 1-chome, Kagoshima 890-0065, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-21 | DOI: https://doi.org/10.1515/crelle-2014-0114

Abstract

We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a singular complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology L-classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.

To the memory of Friedrich Hirzebruch

References

  • [1]

    M. F. Atiyah, Power operations in K-theory, Quart. J. Math. 17 (1966), 165–193. CrossrefGoogle Scholar

  • [2]

    P. Baum, W. Fulton and R. MacPherson, Riemann–Roch for singular varieties, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 101–145. CrossrefGoogle Scholar

  • [3]

    P. Baum, W. Fulton and G. Quart, Lefschetz–Riemann–Roch for singular varieties, Acta Math. 143 (1979), no. 3–4, 193–211. Google Scholar

  • [4]

    L. Borisov and A. Libgober, Elliptic genera of singular varieties, orbifold elliptic genus and chiral de Rham complex, Mirror symmetry IV (Montreal 2000), AMS/IP Stud. Adv. Math. 33, American Mathematical Society, Providence (2002), 325–342. Google Scholar

  • [5]

    J. P. Brasselet, J. Schürmann and S. Yokura, Hirzebruch classes and motivic Chern classes of singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1–55. CrossrefWeb of ScienceGoogle Scholar

  • [6]

    S. E. Cappell, L. Maxim, T. Ohmoto, J. Schn̈urmann and S. Yokura, Characteristic classes of Hilbert schemes of points via symmetric products, Geom. Topol. 17 (2013), no. 2, 1165–1198. CrossrefGoogle Scholar

  • [7]

    S. E. Cappell, L. Maxim, J. Schürmann and J. L. Shaneson, Equivariant characteristic classes of complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012), no. 12, 1722–1769. Google Scholar

  • [8]

    S. E. Cappell, L. Maxim and J. L. Shaneson, Hodge genera of algebraic varieties. I, Comm. Pure Appl. Math. 61 (2008), no. 3, 422–449. Google Scholar

  • [9]

    S. E. Cappell and J. L. Shaneson, Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991), no. 3, 521–551. CrossrefGoogle Scholar

  • [10]

    P. Du Bois, Complexe de De Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), 41–81. Google Scholar

  • [11]

    W. Fulton and S. Lang, Riemann–Roch algebra, Grundlehren Math. Wiss. 277, Springer, New York 1985. Google Scholar

  • [12]

    F. Hirzebruch, Topological methods in algebraic geometry, Springer, Berlin 1966. Google Scholar

  • [13]

    M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac–Moody groups, preprint (2000), http://arxiv.org/abs/math/0001005.

  • [14]

    S. Kovács and K. Schwede, Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 51–94. Google Scholar

  • [15]

    E. Looijenga, Motivic measures, Séminaire Bourbaki. Volume 1999/2000. Exposés 865–879, Astérisque 276, Société Mathématique de France, Paris (2002), 267–297. Google Scholar

  • [16]

    I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563–568. Google Scholar

  • [17]

    R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. CrossrefGoogle Scholar

  • [18]

    B. Moonen, Das Lefschetz–Riemann–Roch Theorem für singuläre Varietäten, Bonner Math. Schriften 106 (1978). Google Scholar

  • [19]

    L. Maxim, M. Saito and J. Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. (9) 96 (2011), no. 5, 462–483. Web of ScienceCrossrefGoogle Scholar

  • [20]

    L. Maxim and J. Schürmann, Hirzebruch invariants of symmetric products, Topology of algebraic varieties and singularities, Contemp. Math. 538, American Mathematical Society, Providence (2011), 163–177. Google Scholar

  • [21]

    L. Maxim and J. Schürmann, Twisted genera of symmetric products, Selecta Math. (N.S.) 18 (2012), no. 1, 283–317. Google Scholar

  • [22]

    M. Nori, The Hirzebruch–Riemann–Roch theorem, Michigan Math. J. 48 (2000), 473–482. Google Scholar

  • [23]

    T. Ohmoto, Generating functions for orbifold Chern classes I: Symmetric products, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 2, 423–438. CrossrefGoogle Scholar

  • [24]

    M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995. CrossrefGoogle Scholar

  • [25]

    M. Saito, Induced D-modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361–387. Google Scholar

  • [26]

    M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. CrossrefGoogle Scholar

  • [27]

    M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331. Google Scholar

  • [28]

    J. Schürmann, A general construction of partial Grothendieck transformations, preprint (2003), http://arxiv.org/abs/math/0209299.

  • [29]

    J. Schürmann, Characteristic classes of mixed Hodge modules, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 419–470. Google Scholar

  • [30]

    J. Schürmann and S. Yokura, A survey of characteristic classes of singular spaces, Singularity theory. Proceedings of the 2005 Marseille singularity school and conference (Marseille 2005), World Scientific, Singapore (2007), 865–952., Google Scholar

  • [31]

    D. Yau, Lambda-rings, World Scientific, Hackensack 2010. Google Scholar

  • [32]

    S. Yokura, Motivic characteristic classes, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 375–418. Google Scholar

  • [33]

    D. Zagier, Equivariant Pontrjagin classes and applications to orbit spaces. Applications of the G-signature theorem to transformation groups, symmetric products and number theory, Lecture Notes in Math. 290, Springer, Berlin 1972. Google Scholar

About the article

Received: 2012-08-03

Published Online: 2015-01-21

Published in Print: 2017-07-01


S. Cappell and J. Shaneson are partially supported by DARPA-25-74200-F6188. L. Maxim was partially supported by grants from NSF (1005338 and 1304999), NSA (H98230-14-1-0130), by a grant of the Ministry of National Education (CNCS-UEFISCDI project number PN-II-ID-PCE-2012-4-0156), and by a research fellowship from the Max-Planck-Institut für Mathematik, Bonn. J. Schürmann is supported by the SFB 878 “groups, geometry and actions”. S. Yokura is partially supported by Grant-in-Aid for Scientific Research (No. 24540085), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017, Issue 728, Pages 35–63, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0114.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Laurenţiu Maxim and Jörg Schürmann
Geometry & Topology, 2017, Volume 22, Number 1, Page 471

Comments (0)

Please log in or register to comment.
Log in