Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2017, Issue 730

Issues

Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces

Marian Aprodu
  • Institute of Mathematics “Simion Stoilow”, Romanian Academy, Calea Griviţei 21, Sector 1, 010702 Bucharest, Romania; and Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Str., 010014 Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gavril Farkas / Angela Ortega
Published Online: 2015-02-27 | DOI: https://doi.org/10.1515/crelle-2014-0124

Abstract

The Minimal Resolution Conjecture (MRC) for points on a projective variety X predicts that the Betti numbers of general sets of points in X are as small as the geometry (Hilbert function) of X allows. To a large extent, we settle this conjecture for a curve C with general moduli. We then proceed to find a full solution to the Ideal Generation Conjecture for curves with general moduli. In a different direction, we prove that K3 surfaces admit Ulrich bundles of every rank. We apply this to describe a pfaffian equation for the Chow form of a K3 surface.

References

  • [1]

    M. Aprodu and G. Farkas, The Green conjecture for smooth curves lying on arbitrary K3 surfaces, Compos. Math. 147 (2011), 839–851. Google Scholar

  • [2]

    A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. CrossrefGoogle Scholar

  • [3]

    A. Beauville, Some stable vector bundles with reducible theta divisors, Manuscripta Math. 110 (2003), 343–349. CrossrefGoogle Scholar

  • [4]

    J. Brennan, J. Herzog and B. Ulrich, Maximally generated Cohen–Macaulay modules, Math. Scand. 61 (1987), 181–203. CrossrefGoogle Scholar

  • [5]

    M. Casanellas and R. Hartshorne, ACM bundles on cubic surfaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 709–731. Google Scholar

  • [6]

    M. Casanellas and R. Hartshorne, Stable Ulrich bundles, Internat. J. Math. 23 (2012), Article ID 1250083. Google Scholar

  • [7]

    A. Chiodo, D. Eisenbud, G. Farkas and F.-O. Schreyer, Syzygies of torsion bundles and the geometry of the level modular varieties over ¯g, Invent. Math. 194 (2013), 73–118. Google Scholar

  • [8]

    C. Ciliberto and G. Pareschi, Pencils of minimal degree on curves on a K3 surface, J. reine angew. Math. 460 (1995), 15–36. Google Scholar

  • [9]

    M. Coppens and G. Martens, Linear series on general k-gonal curves, Abh. Math. Semin. Univ. Hambg. 69 (1999), 347–371. CrossrefGoogle Scholar

  • [10]

    E. Coskun, Ulrich bundles on quartic surfaces with Picard number 1, C. R. Acad. Sci. Paris Sér. I 351 (2013), 221–224. CrossrefGoogle Scholar

  • [11]

    E. Coskun and R. Kulkarni and Y. Mustopa, Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math. 17 (2012), 1003–1028. Google Scholar

  • [12]

    E. Coskun, R. Kulkarni and Y. Mustopa, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra 375 (2013), 280–301. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    L. Ein and R. Lazarsfeld, Stability and restrictions of Picard bundles with an application to the normal bundles of elliptic curves, Complex projective geometry, London Math. Soc. Lecture Note Ser. 179, Cambridge University Press, Cambridge (1992), 149–156. Google Scholar

  • [14]

    D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and sheaf resolutions over exterior algebras, Trans. Amer. Math. Soc. 353 (2003), 4397–4426. Google Scholar

  • [15]

    D. Eisenbud, S. Popescu, F.-O. Schreyer and C. Walter, Exterior algebra methods for the minimal resolution conjecture, Duke Math. J. 112 (2002), 379–395. CrossrefGoogle Scholar

  • [16]

    D. Eisenbud and F.-O. Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), 537–579. CrossrefGoogle Scholar

  • [17]

    D. Eisenbud and F.-O. Schreyer, Boij–Söderberg theory, Combinatorial aspects of commutative algebra, Springer, Berlin (2011), 35–48. Google Scholar

  • [18]

    G. Farkas, M. Mustaţă and M. Popa, Divisors on g,g+1 and the minimal resolution conjecture for points on canonical curves, Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 553–581.. Google Scholar

  • [19]

    M. Green, Koszul cohomology and the cohomology of projective varieties, J. Differential Geom. 19 (1984), 125–171. CrossrefGoogle Scholar

  • [20]

    M. Green and R. Lazarsfeld, Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357–370. Google Scholar

  • [21]

    A. Hirschowitz and C. Simpson, La résolution minimale de l’arrangement d’un grand nombre de points dans 𝐏n, Invent. Math. 126 (1996), 467–503. Google Scholar

  • [22]

    R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste 1987), World Scientific, Teaneck (1989), 500–559. Google Scholar

  • [23]

    R. Lazarsfeld, Lectures on linear series, Complex algebraic geometry (Park City 1993), IAS/Park City Math. Ser. 3, American Mathematical Society, Providence (1997), 163–224. Google Scholar

  • [24]

    R. Miró-Roig and J. Pons-Llopis, The minimal resolution conjecture for points on del Pezzo surfaces, Algebra Number Theory 6 (2012), 27–46. CrossrefGoogle Scholar

  • [25]

    S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1989), 3000–3002. CrossrefGoogle Scholar

  • [26]

    M. Mustaţă, Graded Betti numbers of general finite subsets of points on projective varieties, Matematiche (Catania) 53 (1998), 53–81. Google Scholar

  • [27]

    M. Popa, On the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris Sér. I 329 (1999), 507–512. CrossrefGoogle Scholar

  • [28]

    M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103–125. Google Scholar

  • [29]

    E. Sernesi, On the existence of certain families of curves, Invent. Math. 75 (1984), 25–57. CrossrefGoogle Scholar

  • [30]

    C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), 1163–1190. CrossrefGoogle Scholar

About the article

Received: 2014-02-22

Revised: 2014-10-15

Published Online: 2015-02-27

Published in Print: 2017-09-01


The first author was partly supported by the CNCS-UEFISCDI grant PN-II-PCE-2011-3-0288 and by a Humboldt fellowship. The second and third authors were partly supported by the SFB 647 “Raum-Zeit-Materie”.


Citation Information: Journal für die reine und angewandte Mathematik, Volume 2017, Issue 730, Pages 225–249, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0124.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marian Aprodu, Laura Costa, and Rosa Maria Miró-Roig
Journal of Pure and Applied Algebra, 2018, Volume 222, Number 1, Page 131
[2]
Daniele Faenzi
Algebra & Number Theory, 2019, Volume 13, Number 6, Page 1443
[3]
Arnaud Beauville
European Journal of Mathematics, 2017
[4]
Rajesh S. Kulkarni, Yusuf Mustopa, and Ian Shipman
Mathematische Zeitschrift, 2017
[5]
Yeongrak Kim
Manuscripta Mathematica, 2016, Volume 150, Number 1-2, Page 99

Comments (0)

Please log in or register to comment.
Log in