Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2018, Issue 735

Issues

The motivic Thom–Sebastiani theorem for regular and formal functions

Quy Thuong Lê
Published Online: 2015-06-16 | DOI: https://doi.org/10.1515/crelle-2015-0022

Abstract

Thanks to the work of Hrushovski and Loeser on motivic Milnor fibers, we give a model-theoretic proof for the motivic Thom–Sebastiani theorem in the case of regular functions. Moreover, slightly extending Hrushovski–Loeser’s construction adjusted to Sebag, Loeser and Nicaise’s motivic integration for formal schemes and rigid varieties, we formulate and prove an analogous result for formal functions. The latter is meaningful as it has been a crucial element of constructing Kontsevich–Soibelman’s theory of motivic Donaldson–Thomas invariants.

References

  • [1]

    A. Abbes, Éléments de géométrie rigide. Volume I: Construction et étude géométrique des espaces rigides, Progr. Math. 286, Birkhäuser, Basel 2010. Google Scholar

  • [2]

    S. Bosch, W. Lütkebohmert and M. Raynaud, Formal and rigid geometry, III: The relative maximum principle, Math. Ann. 302 (1995), 1–29. CrossrefGoogle Scholar

  • [3]

    J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), 505–537. Google Scholar

  • [4]

    J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201–232. CrossrefGoogle Scholar

  • [5]

    J. Denef and F. Loeser, Motivic exponential integrals and a motivic Thom–Sebastiani theorem, Duke Math. J. 99 (1999), 285–309. CrossrefGoogle Scholar

  • [6]

    J. Denef and F. Loeser, Geometry on arc spaces of algebraic varieties, European congress of mathematics. Vol. 1 (Barcelona 2000), Progr. Math. 201, Birkhäuser, Basel (2001), 327–348. Google Scholar

  • [7]

    J. Denef and F. Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), 1031–1040. CrossrefGoogle Scholar

  • [8]

    L. Fu, A Thom–Sebastiani theorem in characteristic p, Math. Res. Lett. 21 (2014), 101–119. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    M. J. Greenberg, Schemata over local rings, Ann. of Math. 73 (1961), 624–648. CrossrefGoogle Scholar

  • [10]

    G. Guibert, F. Loeser and M. Merle, Nearby cycles and composition with a non-degenerate polynomial, Int. Math. Res. Not. IMRN 31 (2005), 1873–1888. Google Scholar

  • [11]

    G. Guibert, F. Loeser and M. Merle, Iterated vanishing cycles, convolution, and a motivic analogue of the conjecture of Steenbrink, Duke Math. J. 132 (2006), 409–457. CrossrefGoogle Scholar

  • [12]

    G. Guibert, F. Loeser and M. Merle, Composition with a two variable function, Math. Res. Lett. 16 (2009), 439–448. CrossrefGoogle Scholar

  • [13]

    E. Hrushovski and D. Kazhdan, Integration in valued fields, Algebraic geometry and number theory, Progr. Math. 253, Birkhäuser, Basel (2006), 261–405. Google Scholar

  • [14]

    E. Hrushovski and F. Loeser, Monodromy and the Lefschetz fixed point formula, Ann. Sci. École Norm. Sup. 48 (2015), 313–349. CrossrefGoogle Scholar

  • [15]

    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008), http://arxiv.org/abs/0811.2435.

  • [16]

    G. Laumon, Transformation de Fourier, constantes d’équations fontionnelles, et conjecture de Weil, Publ. Math. IHES 65 (1987), 131–210. CrossrefGoogle Scholar

  • [17]

    Q. T. Lê, Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J. 164 (2015), 157–194. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    F. Loeser and J. Sebag, Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J. 119 (2003), 315–344. CrossrefGoogle Scholar

  • [19]

    E. Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Google Scholar

  • [20]

    J. Nicaise, A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann. 343 (2009), 285–349. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    J. Nicaise and J. Sebag, Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math. 168 (2007), 133–173. Web of ScienceCrossrefGoogle Scholar

  • [22]

    M. Saito, Mixed Hodge modules and applications, Proceedings of the ICM (Kyoto 1990), Springer, Tokyo (1991), 725–734. Google Scholar

  • [23]

    J. Sebag, Intégration motivique sur les schémas formels, Bull. Soc. Math. France 132 (2004), 1–54. CrossrefGoogle Scholar

  • [24]

    M. Sebastiani and R. Thom, Un résultat sur la monodromie, Invent. Math. 13 (1971), 90–96. CrossrefGoogle Scholar

  • [25]

    J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Oslo 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), 525–563. Google Scholar

  • [26]

    M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), 488–522. Web of ScienceCrossrefGoogle Scholar

  • [27]

    A. N. Varchenko, Asymptotic Hodge structure in the vanishing cohomology (Russian), Izv. Akad. Nauk SSSR Ser. Math. 45 (1981), 540–591; translation in Math. USSR Izv. 18 (1982), 469–512. Google Scholar

About the article

Received: 2014-05-28

Published Online: 2015-06-16

Published in Print: 2018-02-01


Funding Source: H2020 European Research Council

Award identifier / Grant number: 246903/NMNAG

The author is partially supported by the Centre Henri Lebesgue (program “Investissements d’avenir”, ANR-11-LABX-0020-01) and by ERC under the European Community’s Seventh Framework Programme (FP7/2007-2013), ERC Grant Agreement no. 246903/NMNAG.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018, Issue 735, Pages 175–198, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2015-0022.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Quy Thuong Lê
Vietnam Journal of Mathematics, 2017
[3]
Lê Quy Thuong
Acta Mathematica Vietnamica, 2017, Volume 42, Number 2, Page 289

Comments (0)

Please log in or register to comment.
Log in