[1]

F. W. Anderson and K. R. Fuller,
Rings and categories of modules, 2nd ed.,
Grad. Texts in Math. 13,
Springer, New York 1992.
Google Scholar

[2]

M. F. Atiyah,
Elliptic operators, discrete groups and von Neumann algebras,
Colloque “analyse et topologie” en l’honneur de Henri Cartan (Orsay 1974),
Astérisque 32–33,
Soc. Math. France, Paris (1976), 43–72.
Google Scholar

[3]

T. Austin,
Rational group ring elements with kernels having irrational dimension,
Proc. London Math. Soc. 107 (2013), no. 6, 1424–1448.
CrossrefWeb of ScienceGoogle Scholar

[4]

T. Ceccherini-Silberstein and M. Coornaert,
Cellular automata and groups,
Springer Monogr. Math.,
Springer, Berlin 2010.
Google Scholar

[5]

C. Chou,
Elementary amenable groups,
Illinois J. Math. 24 (1980), no. 3, 396–407.
Google Scholar

[6]

N.-P. Chung and H. Li,
Homoclinic groups, IE groups, and expansive algebraic actions,
Invent. Math. 199 (2015), no. 3, 805–858.
Web of ScienceCrossrefGoogle Scholar

[7]

N.-P. Chung and A. Thom,
Some remarks on the entropy for algebraic actions of amenable groups,
Trans. Amer. Math. Soc. (2014), 10.1090/S0002-9947-2014-06348-4.
Google Scholar

[8]

M. Coornaert and F. Krieger,
Mean topological dimension for actions of discrete amenable groups,
Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 779–793.
CrossrefGoogle Scholar

[9]

W. Dicks and T. Schick,
The spectral measure of certain elements of the complex group ring of a wreath product,
Geom. Dedicata 93 (2002), 121–137.
CrossrefGoogle Scholar

[10]

G. Elek,
On the analytic zero divisor conjecture of Linnell,
Bull. London Math. Soc. 35 (2003), no. 2, 236–238.
CrossrefGoogle Scholar

[11]

G. Elek,
The rank of finitely generated modules over group algebras,
Proc. Amer. Math. Soc. 131 (2003), no. 11, 3477–3485.
CrossrefGoogle Scholar

[12]

Ł. Grabowski,
Irrational ${\mathrm{\ell}}^{2}$-invariants arising from the lamplighter group,
Groups Geom. Dyn., to appear.
Google Scholar

[13]

Ł. Grabowski,
On Turing dynamical systems and the Atiyah problem,
Invent. Math. 198 (2014), no. 1, 27–69.
CrossrefWeb of ScienceGoogle Scholar

[14]

R. I. Grigorchuk, P. Linnell, T. Schick and A. Żuk,
On a question of Atiyah,
C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 9, 663–668.
CrossrefGoogle Scholar

[15]

R. I. Grigorchuk and A. Żuk,
The lamplighter group as a group generated by a 2-state automaton, and its spectrum,
Geom. Dedicata 87 (2001), no. 1–3, 209–244.
CrossrefGoogle Scholar

[16]

M. Gromov,
Topological invariants of dynamical systems and spaces of holomorphic maps. I,
Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415.
CrossrefGoogle Scholar

[17]

Y. Gutman,
Embedding ${\mathbb{Z}}^{k}$-actions in cubical shifts and ${\mathbb{Z}}^{k}$-symbolic extensions,
Ergodic Theory Dynam. Systems 31 (2011), no. 2, 383–403.
Google Scholar

[18]

Y. Gutman,
Dynamical embedding in cubical shifts & the topological Rokhlin and small boundary properties,
preprint (2013), http://arxiv.org/abs/1301.6072.

[19]

W. Hurewicz and H. Wallman,
Dimension theory,
Princeton Math. Ser. 4,
Princeton University Press, Princeton 1941.
Google Scholar

[20]

R. V. Kadison and J. R. Ringrose,
Fundamentals of the theory of operator algebras. Vol. II. Advanced theory,
Grad. Stud. Math. 16,
American Mathematical Society, Providence 1997.
Google Scholar

[21]

T. Karube,
On the local cross-sections in locally compact groups,
J. Math. Soc. Japan 10 (1958), 343–347.
CrossrefGoogle Scholar

[22]

F. Krieger,
Groupes moyennables, dimension topologique moyenne et sous-décalages,
Geom. Dedicata 122 (2006), 15–31.
Google Scholar

[23]

F. Krieger,
Minimal systems of arbitrary large mean topological dimension,
Israel J. Math. 172 (2009), 425–444.
Web of ScienceCrossrefGoogle Scholar

[24]

S. Lang,
Algebra, 3rd ed.,
Grad. Texts in Math. 211,
Springer, New York 2002.
Google Scholar

[25]

F. Lehner and S. Wagner,
Free Lamplighter groups and a question of Atiyah,
Amer. J. Math. 135 (2013), no. 3, 835–849.
CrossrefGoogle Scholar

[26]

H. Li,
Compact group automorphisms, addition formulas and Fuglede–Kadison determinants,
Ann. of Math. (2) 176 (2012), no. 1, 303–347.
CrossrefWeb of ScienceGoogle Scholar

[27]

H. Li,
Sofic mean dimension,
Adv. Math. 244 (2013), 570–604.
Web of ScienceCrossrefGoogle Scholar

[28]

H. Li and A. Thom,
Entropy, determinants, and ${L}^{2}$-torsion,
J. Amer. Math. Soc. 27 (2014), no. 1, 239–292.
Google Scholar

[29]

D. Lind, K. Schmidt and T. Ward,
Mahler measure and entropy for commuting automorphisms of compact groups,
Invent. Math. 101 (1990), 593–629.
CrossrefGoogle Scholar

[30]

E. Lindenstrauss,
Mean dimension, small entropy factors and an embedding theorem,
Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227–262.
CrossrefGoogle Scholar

[31]

E. Lindenstrauss and B. Weiss,
Mean topological dimension,
Israel J. Math. 115 (2000), 1–24.
CrossrefGoogle Scholar

[32]

P. A. Linnell,
Division rings and group von Neumann algebras,
Forum Math. 5 (1993), no. 6, 561–576.
Google Scholar

[33]

W. Lück,
Dimension theory of arbitrary modules over finite von Neumann algebras and ${L}^{2}$-Betti numbers. I. Foundations,
J. reine angew. Math. 495 (1998), 135–162.
Google Scholar

[34]

W. Lück,
${L}^{2}$-invariants: Theory and applications to geometry and *K*-theory,
Springer, Berlin 2002.
Google Scholar

[35]

J. Moulin Ollagnier,
Ergodic theory and statistical mechanics,
Lecture Notes in Math. 1115,
Springer, Berlin 1985.
Google Scholar

[36]

J. Nagata,
Modern dimension theory, rev. ed.,
Sigma Ser. Pure Math. 2,
Heldermann, Berlin 1983.
Google Scholar

[37]

D. G. Northcott and M. Reufel,
A generalization of the concept of length,
Quart. J. Math. Oxford Ser. (2) 16 (1965), 297–321.
CrossrefGoogle Scholar

[38]

D. S. Ornstein and B. Weiss,
Entropy and isomorphism theorems for actions of amenable groups,
J. Analyse Math. 48 (1987), 1–141.
CrossrefGoogle Scholar

[39]

J. Peters,
Entropy on discrete abelian groups,
Adv. Math. 33 (1979), no. 1, 1–13.
CrossrefGoogle Scholar

[40]

M. Pichot, T. Schick and A. Żuk,
Closed manifolds with transcendental ${L}^{2}$-Betti numbers,
J. Lond. Math. Soc., to appear.
Google Scholar

[41]

G. Pisier,
The volume of convex bodies and Banach space geometry,
Cambridge Tracts in Math. 94,
Cambridge University Press, Cambridge 1989.
Google Scholar

[42]

L. S. Pontryagin,
Topological groups,
Gordon and Breach Science Publishers, New York 1966.
Google Scholar

[43]

L. Pontrjagin and L. Schnirelmann,
Sur une propriété métrique de la dimension,
Ann. of Math. (2) 33 (1932), no. 1, 156–162;
translation in: Classics on fractals, Westview Press, Boulder (2004), 133–142.
CrossrefGoogle Scholar

[44]

L. Salce, P. Vámos and S. Virili,
Length functions, multiplicities and algebraic entropy,
Forum Math. 25 (2013), no. 2, 255–282.
Web of ScienceGoogle Scholar

[45]

K. Schmidt,
Dynamical systems of algebraic origin,
Progr. Math. 128,
Birkhäuser, Basel 1995.
Google Scholar

[46]

M. Takesaki,
Theory of operator algebras I,
Encyclopaedia Math. Sci. **124**, Oper. Alg. Non-Commut. Geom. 5,
Springer, Berlin 2002.
Google Scholar

[47]

M. Tsukamoto,
Moduli space of Brody curves, energy and mean dimension,
Nagoya Math. J. 192 (2008), 27–58.CrossrefWeb of ScienceGoogle Scholar

[48]

M. Tsukamoto,
Deformation of Brody curves and mean dimension,
Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1641–1657.
CrossrefGoogle Scholar

[49]

T. Yamanoshita,
On the dimension of homogeneous spaces,
J. Math. Soc. Japan 6 (1954), 151–159.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.