[1]

M. Atiyah and R. Bott,
The Yang–Mills equations over Riemann surfaces,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 308 (1983), no. 1505, 523–615.
CrossrefGoogle Scholar

[2]

S. Bradlow,
Special metrics and stability for holomorphic bundles with global sections,
J. Differential Geom. 33 (1991), 169–214.
CrossrefGoogle Scholar

[3]

S. Bradlow, G. Daskalopoulos and R. Wentworth,
Birational equivalences of vortex moduli,
Topology 35 (1996), no. 3, 731–748.
CrossrefGoogle Scholar

[4]

H.-L. Chang and J. Li,
Gromov–Witten invariants of stable maps with fields,
Int. Math. Res. Not. 2012 (2012), 4163–4217.
Google Scholar

[5]

H.-L. Chang, J. Li and W.-P. Li,
Witten’s top Chern class via cosection localization,
preprint (2013), http://arxiv.org/abs/1303.7126.

[6]

K. Cieliebak, A. Gaio, I. Mundet i Riera and D. Salamon,
The symplectic vortex equations and invariants of Hamiltonian group actions,
J. Symplectic Geom. 1 (2002), no. 3, 543–645.
Google Scholar

[7]

K. Cieliebak, A. Gaio and D. Salamon,
*J*-holomorphic curves, moment maps, and invariants of Hamiltonian group actions,
Int. Math. Res. Not. 2000 (2000), 831–882.
Google Scholar

[8]

S. Donaldson and P. Kronheimer,
The geometry of four-manifolds,
Oxford Math. Monogr.,
Clarendon Press, Oxford 1990.
Google Scholar

[9]

Y. Eliashberg and M. Gromov,
Convex symplectic manifolds,
Several complex variables and complex geometry,
Proc. Sympos. Pure Math. 52 Part 2,
American Mathematical Society, Providence (1991), 135–162.
Google Scholar

[10]

C. Faber, S. Shadrin and D. Zvonkine,
Tautological relations and the *r*-spin Witten conjecture,
Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 4, 621–658.
CrossrefGoogle Scholar

[11]

H. Fan, T. Jarvis and Y. Ruan,
Geometry and analysis of spin equations,
Comm. Pure Appl. Math. 61 (2008), no. 6, 745–788.
CrossrefGoogle Scholar

[12]

H. Fan, T. Jarvis and Y. Ruan,
The Witten equation and its virtual fundamental cycle,
preprint (2011), http://arxiv.org/abs/0712.4025.

[13]

H. Fan, T. Jarvis and Y. Ruan,
The Witten equation, mirror symmetry and quantum singularity theory,
Ann. of Math. 178 (2013), 1–106.
Web of ScienceCrossrefGoogle Scholar

[14]

K. Fukaya and K. Ono,
Arnold conjecture and Gromov–Witten invariants for general symplectic manifolds,
Topology 38 (1999), 933–1048.
CrossrefGoogle Scholar

[15]

A. Gaio and D. Salamon,
Gromov–Witten invariants of symplectic quotients and adiabatic limits,
J. Symplectic Geom. 3 (2005), no. 1, 55–159.
CrossrefGoogle Scholar

[16]

D. Gilbarg and N. Trudinger,
Elliptic partial differential equations of second order, 2nd ed.,
Grundlehren Math. Wiss. 224,
Springer, Berlin 1983.
Google Scholar

[17]

E. González and C. Woodward,
A wall-crossing formula for Gromov–Witten invariants under variation of git quotient,
preprint (2012), http://arxiv.org/abs/1208.1727.

[18]

B. Greene, C. Vafa and N. Warner,
Calabi–Yau manifolds and renormalization group flows,
Nuclear Phys. B 324 (1989), no. 2, 371–390.
CrossrefGoogle Scholar

[19]

M. Gromov,
Pseudoholomorphic curves in symplectic manifolds,
Invent. Math. 82 (1985), no. 2, 307–347.
CrossrefGoogle Scholar

[20]

K. Hori and C. Vafa,
Mirror symmetry,
preprint (2000), http://arxiv.org/abs/hep-th/0002222.

[21]

S. Ivashkovich and V. Shevchishin,
Gromov compactness theorem for *J*-complex curves with boundary,
Int. Math. Res. Not. 2000 (2000), no. 22, 1167–1206.
CrossrefGoogle Scholar

[22]

T. Jarvis, T. Kimura and A. Vaintrob,
Moduli spaces of higher spin curves and integrable hierarchies,
Compos. Math. 126 (2001), no. 2, 157–212.
CrossrefGoogle Scholar

[23]

M. Kontsevich,
Intersection theory on the moduli space of curves and the matrix Airy function,
Commun. Math. Phys. 147 (1992), no. 1, 1–23.
CrossrefGoogle Scholar

[24]

Y.-P. Lee,
Witten’s conjecture and the Virasoro conjecture for genus up to two,
Gromov–Witten theory of spin curves and orbifolds,
Contemp. Math. 403,
American Mathematical Society, Providence (2006), 31–42.
Google Scholar

[25]

J. Li and G. Tian,
Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties,
J. Amer. Math. Soc. 11 (1998), no. 1, 119–174.
CrossrefGoogle Scholar

[26]

J. Li and G. Tian,
Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds,
Topics in symplectic 4-manifolds (Irvine 1996),
International Press, Cambridge (1998), 47–83.
Google Scholar

[27]

E. Martinec,
Criticality, catastrophes, and compactifications,
Physics and mathematics of strings,
World Scientific, Teaneck (1990), 389–433.
Google Scholar

[28]

D. McDuff and D. Salamon,
*J*-holomorphic curves and symplectic topology,
Amer. Math. Soc. Colloq. Publ. 52,
American Mathematical Society, Providence 2004.
Google Scholar

[29]

M. Mirzakhani,
Weil–Petersson volumes and intersection theory on the moduli space of curves,
J. Amer. Math. Soc. 20 (2007), no. 1, 1–23.
CrossrefGoogle Scholar

[30]

I. Mundet i Riera,
Yang–Mills–Higgs theory for symplectic fibrations,
Ph.D. thesis, Universidad Autónoma de Madrid, 1999.
Google Scholar

[31]

I. Mundet i Riera,
Hamiltonian Gromov–Witten invariants,
Topology 43 (2003), no. 3, 525–553.
Google Scholar

[32]

I. Mundet i Riera and G. Tian,
A compactification of the moduli space of twisted holomorphic maps,
Adv. Math. 222 (2009), 1117–1196.
Web of ScienceCrossrefGoogle Scholar

[33]

I. Mundet i Riera and G. Tian,
Hamiltonian Gromov–Witten invariants and Hamiltonian quantum product,
in preparation.

[34]

Y. Ruan,
Topological sigma model and Donaldson-type invariants in Gromov theory,
Duke Math. J. 83 (1996), no. 2, 461–500.
Google Scholar

[35]

Y. Ruan and G. Tian,
A mathematical theory of quantum cohomology,
J. Differential Geom. 42 (1995), 259–367.
CrossrefGoogle Scholar

[36]

D. Salamon,
Lectures on Floer homology,
Symplectic geometry and topology,
IAS/Park City Math. Ser. 7,
American Mathematical Society, Providence (1997), 143–229.
Google Scholar

[37]

C. Taubes,
Self-dual Yang-Mills connections on non-self-dual 4-manifolds,
J. Differential Geom. 17 (1982), no. 1, 139–170.
CrossrefGoogle Scholar

[38]

M. Thaddeus,
Stable pairs, linear systems and the Verlinde formula,
Invent. Math. 117 (1994), 317–353.
CrossrefGoogle Scholar

[39]

G. Tian and G. Xu,
Correlation functions of gauged linear σ-model,
preprint (2014), http://arxiv.org/abs/1406.4253.

[40]

G. Tian and G. Xu,
Virtual fundamental cycles of gauged Witten equation,
in preparation.

[41]

K. Uhlenbeck,
Connections with ${L}^{p}$-bounds on curvature,
Commun. Math. Phys. 83 (1982), 32–42.
Google Scholar

[42]

C. Vafa and N. Warner,
Catastrophes and the classification of conformal theories,
Phys. Lett. B 218 (1989), no. 1, 51–58.
CrossrefGoogle Scholar

[43]

E. Witten,
Topological sigma models,
Commun. Math. Phys. 118 (1988), 411–449.
CrossrefGoogle Scholar

[44]

E. Witten,
Two-dimensional gravity and intersection theory on moduli space,
Survey in differential geometry (Cambridge, MA 1990),
Surv. Differ. Geom. 1,
American Mathematical Society, Providence (1991), 243–310.
Google Scholar

[45]

E. Witten,
Algebraic geometry associated with matrix models of two dimensional gravity,
Topological methods in modern mathematics: A symposium in honor of John Milnor’s sixtieth birthday,
Publish or Perish, Houston (1993), 235–269.
Google Scholar

[46]

E. Witten,
Phases of $N=2$ theories in two dimensions,
Nuclear Phys. B403 (1993), 159–222.
Google Scholar

[47]

C. Woodward,
Quantum Kirwan morphism and Gromov–Witten invariants of quotients I, II, III,
Transform. Groups 20 (2015), 507–556, 881–920, 1155–1193.
Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.