Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2018, Issue 740

Issues

Every conformal minimal surface in ℝ3 is isotopic to the real part of a holomorphic\break null curve

Antonio Alarcón
  • Departamento de Geometría y Topología and Instituto de Matemáticas IEMath-GR, Universidad de Granada, E-18071 Granada, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franc Forstnerič
  • Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI–1000 Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-11 | DOI: https://doi.org/10.1515/crelle-2015-0069

Abstract

We show that for every conformal minimal immersion u:M3 from an open Riemann surface M to 3 there exists a smooth isotopy ut:M3 (t[0,1]) of conformal minimal immersions, with u0=u, such that u1 is the real part of a holomorphic null curve M3 (i.e. u1 has vanishing flux). If furthermore u is nonflat, then u1 can be chosen to have any prescribed flux and to be complete.

References

  • [1]

    A. Alarcón and I. Fernández, Complete minimal surfaces in 3 with a prescribed coordinate function, Differential Geom. Appl. 29 (2011), no. 1, S9–S15. Google Scholar

  • [2]

    A. Alarcón, I. Fernández and F. J. López, Complete minimal surfaces and harmonic functions, Comment. Math. Helv. 87 (2012), 891–904. Web of ScienceCrossrefGoogle Scholar

  • [3]

    A. Alarcón, I. Fernández and F. J. López, Harmonic mappings and conformal minimal immersions of Riemann surfaces into N, Calc. Var. Partial Differential Equations 47 (2013), 227–242. Google Scholar

  • [4]

    A. Alarcón and F. Forstnerič, Null curves and directed immersions of open Riemann surfaces, Invent. Math. 196 (2014), 733–771. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    A. Alarcón, F. Forstnerič and F. J. López, Embedded conformal minimal surfaces in n, preprint (2014), http://arxiv.org/abs/1409.6901; Math. Z. (2015), DOI 10.1007/s00209-015-1586-5.

  • [6]

    A. Alarcón and F. J. López, Minimal surfaces in 3 properly projecting into 2, J. Differential Geom. 90 (2012), 351–382. Google Scholar

  • [7]

    B. Drinovec Drnovšek and F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203–254. CrossrefGoogle Scholar

  • [8]

    Y. Eliashberg and N. Mishachev, Introduction to the h-principle, Grad. Stud. Math. 48, American Mathematical Society, Providence 2002. Google Scholar

  • [9]

    F. Forstnerič, The Oka principle for multivalued sections of ramified mappings, Forum Math. 15 (2003), 309–328. Google Scholar

  • [10]

    F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb. (3) 56, Springer, Berlin 2011. Google Scholar

  • [11]

    F. Forstnerič, Oka manifolds: From Oka to Stein and back. With an appendix by F. Lárusson, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013), no. 4, 747–809. CrossrefGoogle Scholar

  • [12]

    M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3) 9, Springer, Berlin 1986. Google Scholar

  • [13]

    M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851–897. Google Scholar

  • [14]

    R. C. Gunning and R. Narasimhan, Immersion of open Riemann surfaces, Math. Ann. 174 (1967), 103–108. CrossrefGoogle Scholar

  • [15]

    M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. CrossrefGoogle Scholar

  • [16]

    L. Hörmander, An Introduction to complex analysis in several variables, 3rd ed., North-Holland Math. Library 7, North Holland, Amsterdam 1990. Google Scholar

  • [17]

    L. P. Jorge and F. Xavier, A complete minimal surface in 3 between two parallel planes, Ann. of Math. (2) 112 (1980), 203–206. Google Scholar

  • [18]

    R. Kusner and N. Schmitt, The spinor representation of surfaces in space, preprint (1996), http://arxiv.org/abs/dg-ga/9610005.

  • [19]

    F. J. López and A. Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991), 293–300. CrossrefGoogle Scholar

  • [20]

    R. Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, New York 1986. Google Scholar

  • [21]

    S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327–344. CrossrefGoogle Scholar

About the article

Received: 2014-08-22

Revised: 2015-06-28

Published Online: 2015-12-11

Published in Print: 2018-07-01


Antonio Alarcón is supported by the Ramón y Cajal program of the Spanish Ministry of Economy and Competitiveness, and is partially supported by the MINECO/FEDER grants MTM2011-22547 and MTM2014-52368-P, Spain. Franc Forstnerič is supported in part by the research program P1-0291 and the grant J1-5432 from ARRS, Republic of Slovenia.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018, Issue 740, Pages 77–109, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2015-0069.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Alarcón, F. Forstneric̆, and F. J. López
The Journal of Geometric Analysis, 2017
[2]

Comments (0)

Please log in or register to comment.
Log in