degruyter.com uses cookies to store information that enables us to optimize our website and make browsing more comfortable for you. To learn more about the use of cookies, please read our privacy policy.OK
Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2018, Issue 741

Issues

Tangent Lie algebra of derived Artin stacks

Benjamin Hennion
Published Online: 2015-12-10 | DOI: https://doi.org/10.1515/crelle-2015-0065

Abstract

Since the work of Mikhail Kapranov in [Compos. Math. 115 (1999), no. 1, 71–113], it is known that the shifted tangent complex 𝕋X[-1] of a smooth algebraic variety X is endowed with a weak Lie structure. Moreover, any complex of quasi-coherent sheaves E on X is endowed with a weak Lie action of this tangent Lie algebra. This Lie action is given by the Atiyah class of E. We will generalise this result to (finite enough) derived Artin stacks, without any smoothness assumption. This in particular applies to singular schemes. This work uses tools of both derived algebraic geometry and -category theory.

References

  • [1]

    P. M. Cohn, A remark on the Birkhoff–Witt theorem, J. Lond. Math. Soc. (2) 38 (1963), 193–203. Google Scholar

  • [2]

    V. Hinich, Dg-coalgebras as formal stacks, J. Pure Appl. Algebra 162 (2001), 209–250. CrossrefGoogle Scholar

  • [3]

    M. Kapranov, Rozansky–Witten invariants via Atiyah class, Compos. Math. 115 (1999), no. 1, 71–113. CrossrefGoogle Scholar

  • [4]

    A. Kuznetsov and D. Markushevich, Symplectic structures on moduli spaces of sheaves via the atiyah class, J. Geom. Phys. 59 (2009), 843–860. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    J. Lurie, Higher topos theory, Ann. of Math. Stud. 170, Princeton University Press, Princeton 2009. Google Scholar

  • [6]

    J. Lurie, Derived algebraic geometry X: Formal moduli problems, preprint (2011), http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf.

  • [7]

    J. Lurie, Higher algebra, preprint (2012), http://www.math.harvard.edu/ lurie/papers/HigherAlgebra.pdf.

  • [8]

    J. Pridham, Unifying derived deformation theories, Adv. Math. 224 (2010), no. 3, 772–826. Web of ScienceCrossrefGoogle Scholar

  • [9]

    T. Schürg, B. Toën and G. Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, preprint (2011), http://arxiv.org/abs/1102.1150.

  • [10]

    S. Schwede and B. E. Shipley, Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3) 80 (2000), 491–511. CrossrefGoogle Scholar

  • [11]

    B. Toën and M. Vaquié, Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387–444. CrossrefGoogle Scholar

  • [12]

    B. Toën and G. Vezzosi, Homotopical algebraic geometry II: Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008). Google Scholar

About the article

Received: 2014-04-02

Revised: 2015-07-20

Published Online: 2015-12-10

Published in Print: 2018-08-01


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018, Issue 741, Pages 1–45, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2015-0065.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chris Elliott and Philsang Yoo
Communications in Mathematical Physics, 2019, Volume 368, Number 3, Page 985

Comments (0)

Please log in or register to comment.
Log in