[1]
C. Allday and V. Puppe,
Cohomological methods in transformation groups,
Cambridge Stud. Adv. Math. 32,
Cambridge University Press, Cambridge 1993.
Google Scholar
[2]
J. Alvarez López,
Morse inequalities for pseudogroups of local isometries,
J. Differential Geom. 37 (1993), no. 3, 603–638.
CrossrefGoogle Scholar
[3]
J. Alvarez López and Y. Kordykov,
Lefschetz distribution of Lie foliations,
-algebras and elliptic theory II (Bȩdlewo 2006),
Trends Math.,
Birkhäuser, Basel (2008), 1–40.
Google Scholar
[4]
M. Atiyah and R. Bott,
The Yang–Mills equations over Riemann surfaces,
Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615.
CrossrefGoogle Scholar
[5]
V. Belfi, E. Park and K. Richardson,
A Hopf index theorem for foliations,
Differential Geom. Appl. 18 (2003), no. 3, 319–341.
CrossrefGoogle Scholar
[6]
A. Borel, G. Bredon, E. Floyd, P. Montgomery and R. Palais,
Seminar on transformation groups,
Ann. of Math. Stud. 46,
Princeton University Press, Princeton 1960.
Google Scholar
[7]
R. Bott,
Vector fields and characteristic numbers,
Michigan Math. J. 14 (1967), 231–244.
CrossrefGoogle Scholar
[8]
W. Bruns and J. Herzog,
Cohen–Macaulay rings,
Cambridge Stud. Adv. Math. 39,
Cambridge University Press, Cambridge 1993.
Google Scholar
[9]
H. Cartan,
Cohomologie réelle d’un espace fibré principal differentiable,
Sémin. Cartan 2 (1949/1950), Exp. No. 19–20.
Google Scholar
[10]
H. Cartan,
Notions d’algèbre différentielle; applications aux groupes de Lie et aux variétés où opère un groupe de Lie,
Colloque de topologie (Bruxelles 1950),
CBRM, Liège (1951), 15–27.
Google Scholar
[11]
M. W. Davis and T. Januszkiewicz,
Convex polytopes, Coxeter orbifolds and torus actions,
Duke Math. J. 62 (1991), no. 2, 417–451.
CrossrefGoogle Scholar
[12]
J. Duflot,
Smooth toral actions,
Topology 22 (1983), 253–265.
CrossrefGoogle Scholar
[13]
D. Eisenbud,
Commutative algebra with a view toward algebraic geometry,
Grad. Texts in Math. 150,
Springer, New York 1995.
Google Scholar
[14]
D. Eisenbud,
The geometry of syzygies,
Grad. Texts in Math. 229,
Springer, New York 2004.
Google Scholar
[15]
A. El Kacimi-Alaoui, V. Sergiescu and G. Hector,
La cohomologie basique d’un feuilletage riemannien est de dimension finie,
Math. Z. 188 (1985), no. 4, 593–599.
CrossrefGoogle Scholar
[16]
M. Franz and V. Puppe,
Exact sequences for equivariantly formal spaces,
C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), no. 1, 1–10.
Google Scholar
[17]
É. Ghys,
Feuilletages riemanniens sur les variétés simplement connexes,
Ann. Inst. Fourier (Grenoble) 34 (1984), no. 4, 203–223.
CrossrefGoogle Scholar
[18]
O. Goertsches and D. Töben,
Torus actions whose equivariant cohomology is Cohen–Macaulay,
J. Topol. 3 (2010), no. 4, 819–846.
CrossrefWeb of ScienceGoogle Scholar
[19]
O. Goertsches, H. Nozawa and D. Töben,
Equivariant cohomology of K-contact manifolds,
Math. Ann. 354 (2012), no. 4, 1555–1582.
CrossrefWeb of ScienceGoogle Scholar
[20]
M. Goresky, R. Kottwitz and R. MacPherson,
Equivariant cohomology, Koszul duality, and the localization theorem,
Invent. Math. 131 (1998), no. 1, 25–83.
Google Scholar
[21]
V. Guillemin, V. Ginzburg and Y. Karshon,
Moment maps, cobordisms, and Hamiltonian group actions,
Math. Surveys Monogr. 96,
American Mathematical Society, Providence 2002.
Google Scholar
[22]
V. Guillemin, E. Lerman and S. Sternberg,
Symplectic fibrations and multiplicity diagrams,
Cambridge University Press, Cambridge 1996.
Google Scholar
[23]
V. Guillemin and S. Sternberg,
Supersymmetry and equivariant de Rham theory,
Springer, Berlin 1999.
Google Scholar
[24]
W.-Y. Hsiang,
Cohomology theory of topological transformation groups,
Ergeb. Math. Grenzgeb. 85,
Springer, Berlin 1975.
Google Scholar
[25]
S. Hurder and D. Töben,
Transverse LS category for Riemannian foliations,
Trans. Amer. Math. Soc. 361 (2009), no. 11, 5647–5680.
CrossrefGoogle Scholar
[26]
F. Kamber and P. Tondeur,
Foliated bundles and characteristic classes,
Lecture Notes in Math. 493,
Springer, Berlin 1975.
Google Scholar
[27]
F. Kirwan,
Cohomology of quotients in symplectic and algebraic geometry,
Math. Notes 31,
Princeton University Press, Princeton 1984.
Google Scholar
[28]
J. McCleary,
A user’s guide to spectral sequences, 2nd ed.,
Cambridge Stud. Adv. Math. 58,
Cambridge University Press, Cambridge 2001.
Google Scholar
[29]
P. Molino,
Riemannian foliations. With appendices by G. Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu,
Birkhäuser, Boston 1988.
Google Scholar
[30]
W. Mozgawa,
Feuilletages de Killing,
Collect. Math. 36 (1985), no. 3, 285–290.
Google Scholar
[31]
B. Reinhart,
Harmonic integrals on foliated manifolds,
Amer. J. Math. 81 (1959), 529–536.
CrossrefGoogle Scholar
[32]
É. Salem,
Une généralisation du théorème de Myers–Steenrod aux pseudogroupes d’isométries,
Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 185–200.
CrossrefGoogle Scholar
[33]
I. Satake,
On a generalization of the notion of manifold,
Proc. Natl. Acad. Sci. USA 42 (1956), 359–363.
CrossrefGoogle Scholar
[34]
J.-P. Serre,
Local algebra,
Springer Monogr. Math.,
Springer, Berlin 2000.
Google Scholar
[35]
P. Stefan,
Accessibility and foliations with singularities,
Bull. Amer. Math. Soc. 80 (1974), 1142–1145.
CrossrefGoogle Scholar
[36]
H. Sussmann,
Orbits of families of vector fields and integrability of distributions,
Trans. Amer. Math. Soc. 180 (1973), 171–188.
CrossrefGoogle Scholar
[37]
S. Tolman and J. Weitsman,
On the cohomology rings of Hamiltonian T-spaces,
Northern California symplectic geometry seminar,
Amer. Math. Soc. Transl. Ser. 2 196,
American Mathematical Society, Providence (1999), 251–258.
Google Scholar
Comments (0)