[1]

S. Akbulut and H. King,
Submanifolds and homology of nonsingular real algebraic varieties,
Amer. J. Math. 107 (1985), 45–83.
CrossrefGoogle Scholar

[2]

S. Akbulut and H. King,
Topology of real algebraic sets,
Math. Sci. Res. Inst. Publ. 25,
Springer, New York 1992.
Google Scholar

[3]

M. F. Atiyah,
K-theory,
W. A. Benjamin, New York 1967.
Google Scholar

[4]

M. F. Atiyah and F. Hirzebruch,
Vector bundles and homogeneous spaces,
Proc. Sympos. Pure Math. 3 (1961), 7–38.
CrossrefGoogle Scholar

[5]

R. Benedetti and A. Tognoli,
On real algebraic vector bundles,
Bull. Sci. Math. (2) 104 (1980), 89–112.
Google Scholar

[6]

R. Benedetti and A. Tognoli,
Remarks and counterexamples in the theory of real algebraic vector bundles and cycles,
Géométrie algébrique réelle et formes quadratiques,
Lecture Notes in Math. 959,
Springer, Berlin (1982), 198–211.
Google Scholar

[7]

M. Bilski, W. Kucharz, A. Valette and G. Valette,
Vector bundles and regulous maps,
Math. Z. 275 (2013), 403–418.
CrossrefWeb of ScienceGoogle Scholar

[8]

J. Bochnak, M. Buchner and W. Kucharz,
Vector bundles over real algebraic varieties,
K-Theory 3 (1989), 271–298;
erratum in K-Theory 4 (1990), 103.
CrossrefGoogle Scholar

[9]

J. Bochnak, M. Coste and M.-F. Roy,
Real algebraic geometry,
Ergeb. Math. Grenzgeb. (3) 36,
Springer, Berlin 1998.
Google Scholar

[10]

J. Bochnak and W. Kucharz,
Algebraic approximation of mappings into spheres,
Michigan Math. J. 34 (1987), 119–125.
CrossrefGoogle Scholar

[11]

J. Bochnak and W. Kucharz,
Realization of homotopy classes by algebraic mappings,
J. reine angew. Math. 377 (1987), 159–169.
Google Scholar

[12]

J. Bochnak and W. Kucharz,
On real algebraic morphisms into even-dimensional spheres,
Ann. of Math. (2) 128 (1988), 415–433.
CrossrefGoogle Scholar

[13]

J. Bochnak and W. Kucharz,
K-theory of real algebraic surfaces and threefolds,
Math. Proc. Cambridge Philos. Soc. 106 (1989), 471–480.
CrossrefGoogle Scholar

[14]

J. Bochnak and W. Kucharz,
Vector bundles on a product of real cubic curves,
K-Theory 6 (1992), 487–497.
CrossrefGoogle Scholar

[15]

J. Bochnak and W. Kucharz,
Elliptic curves and real algebraic morphisms,
J. Algebraic Geom. 2 (1993), 635–666.
Google Scholar

[16]

J. Bochnak and W. Kucharz,
The homotopy groups of some spaces of real algebraic morphisms,
Bull. Lond. Math. Soc. 25 (1993), 385–392.
CrossrefGoogle Scholar

[17]

J. Bochnak and W. Kucharz,
On homology classes represented by real algebraic varieties,
Singularities symposium – Łojasiewicz 70,
Banach Center Publ. 44,
Polish Academy of Sciences, Warsaw (1998), 21–35.
Google Scholar

[18]

J. Bochnak, W. Kucharz and R. Silhol,
Morphisms, line bundles and moduli spaces in real algebraic geometry,
Publ. Math. Inst. Hautes Études Sci. 86 (1997), 5–65.
CrossrefGoogle Scholar

[19]

J. Bochnak and W. Kucharz,
Real algebraic morphisms represent few homotopy classes,
Math. Ann. 337 (2007), 909–921.
Web of ScienceCrossrefGoogle Scholar

[20]

A. Borel and A. Haefliger,
La classe d’homologie fondamentale d’un espace analytique,
Bull. Soc. Math. France 89 (1961), 461–513.
Google Scholar

[21]

T. Bröcker and K. Janich,
Introduction to differential topology,
Cambridge University Press, Cambridge 1982.
Google Scholar

[22]

E. Dyer,
Cohomology theories,
W. A. Benjamin, New York 1969.
Google Scholar

[23]

G. Fichou, J. Huisman, F. Mangolte and J.-P. Monnier,
Fonctions régulues,
J. reine angew. Math. (2015), 10.1515/crelle-2014-0034.
Google Scholar

[24]

W. Fulton,
Intersection theory,
Ergeb. Math. Grenzgeb. (3) 2,
Springer, Berlin 1984.
Google Scholar

[25]

R. Ghiloni,
Second order homological obstructions on real algebraic manifolds,
Topology Appl. 154 (2007), 3090–3094.
CrossrefWeb of ScienceGoogle Scholar

[26]

P. Griffiths and J. Adams,
Topics in algebraic and analytic geometry,
Math. Notes 13,
Princeton University Press, Princeton 1974.
Google Scholar

[27]

H. Hironaka,
Resolution of singularities of an algebraic variety over a field of characteristic zero,
Ann. of Math. (2) 79 (1964), 109–326.
CrossrefGoogle Scholar

[28]

M. Hirsch,
Differential topology,
Grad. Texts in Math. 33,
Springer, New York 1976.
Google Scholar

[29]

D. Husemoller,
Fibre bundles, 2nd ed.,
Grad. Texts in Math. 20,
Springer, New York 1975.
Google Scholar

[30]

M. Karoubi,
K-theory,
Grundlehren Math. Wiss. 226,
Springer, Berlin 1978.
Google Scholar

[31]

J. Kollár,
Lectures on resolution of singularities,
Ann. of Math. Stud. 166,
Princeton University Press, Princeton 2007.
Google Scholar

[32]

J. Kollár and K. Nowak,
Continuous rational functions on real and *p*-adic varieties,
Math. Z. 279 (2015), 85–97.
Web of ScienceCrossrefGoogle Scholar

[33]

W. Kucharz,
Rational maps in real algebraic geometry,
Adv. Geom. 9 (2009), 517–539.
Web of ScienceGoogle Scholar

[34]

W. Kucharz,
Complex cycles on algebraic models of smooth manifolds,
Math. Ann. 346 (2010), 829–856.
Web of ScienceCrossrefGoogle Scholar

[35]

W. Kucharz,
Approximation by continuous rational maps into spheres,
J. Eur. Math. Soc. (JEMS) 16 (2014), 1555–1569.
CrossrefGoogle Scholar

[36]

K. Kurdyka,
Ensemble semi-algébriques symétriques par arcs,
Math. Ann. 282 (1988), 445–462.
CrossrefGoogle Scholar

[37]

K. Kurdyka,
Injective endomorphisms of real algebraic sets are surjective,
Math. Ann. 313 (1999), 69–82.
CrossrefGoogle Scholar

[38]

K. Kurdyka and A. Parusiński,
Arc-symmetric sets and arc-analytic mappings,
Arc spaces and additive invariants in real algebraic and analytic geometry,
Panor. Synthèses 24,
Société Mathématique de France, Paris (2007), 33–67.
Google Scholar

[39]

J. W. Milnor and J. D. Stasheff,
Characteristic classes,
Ann. of Math. Stud. 76,
Princeton University Press, Princeton 1974.
Google Scholar

[40]

A. Parusiński,
Topology of injective endomorphisms of real algebraic sets,
Math. Ann. 328 (2004), 353–372.
CrossrefGoogle Scholar

[41]

F. P. Peterson,
Some remarks on Chern classes,
Ann. of Math. (2) 69 (1958), 414–420.
Google Scholar

[42]

J.-P. Serre,
Faisceaux algébriques coherents,
Ann. of Math. (2) 61 (1955), 197–278.
CrossrefGoogle Scholar

[43]

E. Spanier,
Algebraic topology,
Springer, Berlin 1966.
Google Scholar

[44]

R. G. Swan,
Vector bundles and projective modules,
Trans. Amer. Math. Soc. 105 (1962), 264–277.
CrossrefGoogle Scholar

[45]

R. G. Swan,
Topological examples of projective modules,
Trans. Amer. Math. Soc. 230 (1977), 201–234.
CrossrefGoogle Scholar

[46]

C. Weibel,
The K-book: An introduction to algebraic K-theory,
Grad. Stud. Math. 145,
American Mathematical Society, Providence 2013.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.