Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2018, Issue 745

Issues

Curves and surfaces with constant nonlocal mean curvature: Meeting Alexandrov and Delaunay

Xavier Cabré
  • ICREA and Universitat Politècnica de Catalunya, Departament de Matemàtiques, Diagonal 647, 08028 Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mouhamed Moustapha Fall / Joan Solà-Morales / Tobias Weth
Published Online: 2016-04-16 | DOI: https://doi.org/10.1515/crelle-2015-0117

Abstract

We are concerned with hypersurfaces of N with constant nonlocal (or fractional) mean curvature. This is the equation associated to critical points of the fractional perimeter under a volume constraint. Our results are twofold. First we prove the nonlocal analogue of the Alexandrov result characterizing spheres as the only closed embedded hypersurfaces in N with constant mean curvature. Here we use the moving planes method. Our second result establishes the existence of periodic bands or “cylinders” in 2 with constant nonlocal mean curvature and bifurcating from a straight band. These are Delaunay-type bands in the nonlocal setting. Here we use a Lyapunov–Schmidt procedure for a quasilinear type fractional elliptic equation.

References

  • [1]

    N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature, Numer. Funct. Anal. Optim. 35 (2014), 793–815. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    A. D. Alexandrov, Uniqueness theorems for surfaces in the large. V (in Russian), Vestnik Leningrad. Univ. 13 (1958), 27–34; translation in Amer. Math. Soc. Transl. (2) 21 (1962), 412–416. Google Scholar

  • [3]

    A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge Stud. Adv. Math. 34, Cambridge University Press, Cambridge 1995. Google Scholar

  • [4]

    B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 609–639. Google Scholar

  • [5]

    X. Cabré, M. Fall and T. Weth, Delaunay hypersurfaces with constant nonlocal mean curvature, preprint (2016), http://arxiv.org/abs/1602.02623.

  • [6]

    X. Cabré, A. Mas and J. Solà-Morales, Periodic solutions of nonlinear dispersive and fractional elliptic equations, forthcoming.

  • [7]

    L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111–1144. Google Scholar

  • [8]

    L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 41 (2011), 203–240. Web of ScienceCrossrefGoogle Scholar

  • [9]

    L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments, Adv. Math. 248 (2013), 843–871. Web of ScienceCrossrefGoogle Scholar

  • [10]

    G. Ciraolo, A. Figalli, F. Maggi and M. Novaga, Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature, J. reine angew. Math. (2016), 10.1515/crelle-2015-0088. Web of ScienceGoogle Scholar

  • [11]

    M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321–340. CrossrefGoogle Scholar

  • [12]

    A.-L. Dalibard and D. Gerard-Varet, On shape optimization problems involving the fractional laplacian, ESAIM Control Optim. Calc. Var. 19 (2013), 976–1013. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Nonlocal Delaunay surfaces, Nonlinear Anal. 137 (2016), 357–380. CrossrefGoogle Scholar

  • [14]

    J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations 256 (2014), 858–892. CrossrefGoogle Scholar

  • [15]

    J. Dávila, M. del Pino and J. Wei, Nonlocal s-minimal surfaces and Lawson cones, preprint (2014), http://arxiv.org/abs/1402.4173.

  • [16]

    C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl. (1) 6 (1841), 309–315. Google Scholar

  • [17]

    S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in n, preprint (2015), http://arxiv.org/abs/1410.3076v4.

  • [18]

    M. M. Fall and S. Jarohs, Overdetermined problems with fractional Laplacian, ESAIM Control Optim. Calc. Var. 21 (2015), no. 4, 924–938. Web of ScienceCrossrefGoogle Scholar

  • [19]

    A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507. CrossrefGoogle Scholar

  • [20]

    A. Figalli and E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces, J. reine angew. Math. (2015), 10.1515/crelle-2015-0006. Web of ScienceGoogle Scholar

  • [21]

    L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Math. 128, Cambridge University Press, Cambridge 2000. Google Scholar

  • [22]

    O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differential Equations 48 (2012), 33–39. Web of ScienceGoogle Scholar

  • [23]

    F. Schlenk and P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian, Adv. Math. 229 (2012), 602–632. Web of ScienceCrossrefGoogle Scholar

  • [24]

    P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var. Partial Differential Equations 37 (2010), 329–344. Web of ScienceCrossrefGoogle Scholar

  • [25]

    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112. CrossrefGoogle Scholar

  • [26]

    E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math. 81 (2013), 1–23. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-08-24

Revised: 2015-12-14

Published Online: 2016-04-16

Published in Print: 2018-12-01


Funding Source: MINECO

Award identifier / Grant number: MTM2011-27739-C04-01

Funding Source: MINECO

Award identifier / Grant number: MTM2014-52402-C3-1-P

The first and third authors are supported by MINECO grants MTM2011-27739-C04-01 and MTM2014-52402-C3-1-P, and they are part of the Catalan research group 2014 SGR 1083. The second author’s work is supported by the Alexander von Humboldt foundation.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018, Issue 745, Pages 253–280, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2015-0117.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Serena Dipierro, Enrico Valdinoci, and Vincenzo Vespri
Journal of Evolution Equations, 2019
[2]
Mouhamed Moustapha Fall
Nonlinear Analysis, 2018, Volume 175, Page 73
[3]
Francesco Maggi and Enrico Valdinoci
Communications in Partial Differential Equations, 2017, Page 1
[4]
Xavier Cabré, Mouhamed Moustapha Fall, and Tobias Weth
Journal de Mathématiques Pures et Appliquées, 2017
[5]
Xavier Cabré, Mouhamed Moustapha Fall, and Tobias Weth
Mathematische Annalen, 2017
[6]
M. Colombo and F. Maggi
Nonlinear Analysis: Theory, Methods & Applications, 2017, Volume 153, Page 243
[7]
Serena Dipierro, Ovidiu Savin, and Enrico Valdinoci
Calculus of Variations and Partial Differential Equations, 2016, Volume 55, Number 4

Comments (0)

Please log in or register to comment.
Log in