Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2018, Issue 745

Issues

Addendum to “Singular equivariant asymptotics and Weyl’s law”

Pablo Ramacher
  • Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-25 | DOI: https://doi.org/10.1515/crelle-2017-0001

Abstract

Let M be a closed Riemannian manifold carrying an effective and isometric action of a compact connected Lie group G. We derive a refined remainder estimate in the stationary phase approximation of certain oscillatory integrals on TM×G with singular critical sets that were examined in [7] in order to determine the asymptotic distribution of eigenvalues of an invariant elliptic operator on M. As an immediate consequence, we deduce from this an asymptotic multiplicity formula for families of irreducible representations in L2(M). The improved remainder is used in [4] to prove an equivariant semiclassical Weyl law and a corresponding equivariant quantum ergodicity theorem.

References

  • [1]

    R. Cassanas, Reduced Gutzwiller formula with symmetry: Case of a Lie group, J. Math. Pures Appl. (9) 85 (2006), 719–742. CrossrefGoogle Scholar

  • [2]

    H. Donnelly, G-spaces, the asymptotic splitting of L2(M) into irreducibles, Math. Ann. 237 (1978), 23–40. Google Scholar

  • [3]

    A. Grigis and J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Note Ser. 196, Cambridge University Press, Cambridge 1994. Google Scholar

  • [4]

    B. Küster and P. Ramacher, Quantum ergodicity and symmetry reduction, J. Funct. Anal. (2017), to appear. Web of ScienceGoogle Scholar

  • [5]

    O. Paniagua-Taobada and P. Ramacher, Equivariant heat asymptotics on spaces of automorphic forms, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3509–3537. Google Scholar

  • [6]

    P. Ramacher, Singular equivariant asymptotics and the momentum map. Residue formulae in equivariant cohomology, J. Symplectic Geom. 14 (2016), no. 2, 449–539. Web of ScienceCrossrefGoogle Scholar

  • [7]

    P. Ramacher, Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator, J. reine angew. Math. 716 (2016), 29–101. Web of ScienceGoogle Scholar

  • [8]

    V. S. Varadarajan, Lie groups, Lie algebras and their representations, Englewood Cliffs, Prentice Hall 1974. Google Scholar

  • [9]

    N. R. Wallach, Real reductive groups. Vol. I, Academic Press, New York 1988. Google Scholar

About the article

Received: 2015-09-15

Published Online: 2017-02-25

Published in Print: 2018-12-01


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018, Issue 745, Pages 281–293, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2017-0001.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Benjamin Küster and Pablo Ramacher
Journal of Functional Analysis, 2017, Volume 273, Number 1, Page 41

Comments (0)

Please log in or register to comment.
Log in