[1]

D. Abramovich and A. Polishchuk,
Sheaves of t-structures and valuative criteria for stable complexes,
J. reine. angew. Math. 590 (2006), 89–130.
Google Scholar

[2]

D. Arcara and A. Bertram,
Bridgeland-stable moduli spaces for *K*-trivial surfaces,
J. Eur. Math. Soc. (JEMS) 15 (2013), 1–38.
CrossrefGoogle Scholar

[3]

D. Arcara, A. Bertram, I. Coskun and J. Huizenga,
The minimal model program for Hilbert schemes of points on the projective plane and Bridgeland stability,
Adv. Math. 235 (2013), 580–626.
CrossrefGoogle Scholar

[4]

A. Bayer,
Polynomial Bridgeland stability conditions and the large volume limit,
Geom. Topol. 13 (2009), 2389–2425.
CrossrefWeb of ScienceGoogle Scholar

[5]

A. Bayer and E. Macrì,
MMP for moduli of sheaves on K3s via wall-crossing: Nef and movable cones, Lagrangian fibrations,
Invent. Math. 198 (2014), 505–590.
Web of ScienceCrossrefGoogle Scholar

[6]

A. Bayer and E. Macrì,
Projectivity and birational geometry of Bridgeland moduli spaces,
J. Amer. Math. Soc. 27 (2014), 707–752.
CrossrefGoogle Scholar

[7]

A. Bayer, E. Macrì and P. Stellari,
The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds,
Invent. Math. (2016), 10.1007/s00222-016-0665-5.
Web of ScienceGoogle Scholar

[8]

A. Bayer, E. Macrì and Y. Toda,
Bridgeland stability conditions on 3-folds I: Bogomolov–Gieseker type inequalities,
J. Algebraic Geom. 23 (2014), 117–163.
Google Scholar

[9]

K. Behrend,
Donaldson–Thomas invariants via microlocal geometry,
Ann. of Math. (2) 170 (2009), no. 3, 1307–1338.
Web of ScienceCrossrefGoogle Scholar

[10]

K. Behrend and B. Fantechi,
The intrinsic normal cone,
Invent. Math. 128 (1997), 45–88.
CrossrefGoogle Scholar

[11]

O. Ben-Bassat, C. Brav, V. Bussi and D. Joyce,
A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications,
preprint (2013), http://arxiv.org/abs/1312.0090.

[12]

A. Bondal and M. Van den Bergh,
Generators and representability of functors in commutative and noncommutative geometry,
Mosc. Math. J. 258 (2003), 1–36.
Google Scholar

[13]

T. Bridgeland,
Stability conditions on triangulated categories,
Ann. of Math. (2) 166 (2007), 317–345.
Web of ScienceCrossrefGoogle Scholar

[14]

T. Bridgeland,
Stability conditions on K3 surfaces,
Duke Math. J. 141 (2008), 241–291.
Web of ScienceCrossrefGoogle Scholar

[15]

M. Douglas,
Dirichlet branes, homological mirror symmetry, and stability,
Proceedings of the international congress of mathematicians (ICM 2002),
Higher Education Press, Beijing (2002), 395–408.
Google Scholar

[16]

T. L. Gomez,
Algebraic stacks,
Proc. Indian Acad. Sci. Math. Sci. 111 (2001), 1–31.
CrossrefGoogle Scholar

[17]

D. Happel, I. Reiten and S. O. Smalø,
Tilting in abelian categories and quasitilted algebras,
Mem. Amer. Math. Soc. 575 (1996), 1–88.
Google Scholar

[18]

D. Huybrechts,
Derived and abelian equivalence of K3 surfaces,
J. Algebraic Geom. 17 (2008), no. 2, 375–400.
CrossrefWeb of ScienceGoogle Scholar

[19]

D. Huybrechts and M. Lehn,
The geometry of moduli spaces of sheaves, 2nd ed.,
Cambridge University Press, Cambridge 2010.
Google Scholar

[20]

D. Huybrechts and R. P. Thomas,
Deformation-obstruction theory for complexes via Atiyah–Kodaira–Spencer classes,
Math. Ann. 346 (2010), 545–569.
CrossrefWeb of ScienceGoogle Scholar

[21]

M. Inaba,
Toward a definition of moduli of complexes of coherent sheaves on a projective scheme,
J. Math. Kyoto Univ. 42 (2002), no. 2, 317–329.
CrossrefGoogle Scholar

[22]

D. Joyce,
Configurations in abelian categories II. Ringel–Hall algebras,
Adv. Math. 210 (2007), 635–706.
CrossrefWeb of ScienceGoogle Scholar

[23]

D. Joyce,
Configurations in abelian categories III. Stability conditions and identities,
Adv. Math. 215 (2007), 153–219.
CrossrefWeb of ScienceGoogle Scholar

[24]

D. Joyce and Y. Song,
A theory of generalized Donaldson–Thomas invariants,
Mem. Amer. Math. Soc. 217 (2012), 1–199.
Google Scholar

[25]

M. Kontsevich and Y. Soibelman,
Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,
preprint (2008), http://arxiv.org/abs/0811.2435.

[26]

A. Langer,
Semistable sheaves in positive characteristic,
Ann. of Math. (2) 159 (2004), 251–276.
CrossrefGoogle Scholar

[27]

M. Lieblich,
Moduli of complexes on a proper morphism,
J. Algebraic Geom. 15 (2006), 175–206.
CrossrefGoogle Scholar

[28]

J. Lo,
Moduli of PT-semistable objects I,
J. Algebra 339 (2011), 203–222.
Web of ScienceCrossrefGoogle Scholar

[29]

J. Lo,
Moduli of PT-semistable objects II,
Trans. Amer. Math. Soc. 365 (2013), 4539–4573.
CrossrefGoogle Scholar

[30]

A. Maciocia and D. Piyaratne,
Fourier–Mukai transforms and Bridgeland stability conditions on abelian threefolds,
Algebraic Geom. 2 (2015), no. 3, 270–297.
CrossrefWeb of ScienceGoogle Scholar

[31]

A. Maciocia and D. Piyaratne,
Fourier–Mukai transforms and Bridgeland stability conditions on abelian threefolds II,
Internat. J. Math. 27 (2016), no. 1, Article ID 1650007.
Google Scholar

[32]

E. Macrì,
A generalized Bogomolov–Gieseker inequality for the three-dimensional projective space,
Algebra Number Theory 8 (2014), 173–190.
Web of ScienceCrossrefGoogle Scholar

[33]

K. Oguiso and J. Sakurai,
Calabi–Yau threefolds of quotient type,
Asian J. Math. 5 (2001), 43–77.
CrossrefGoogle Scholar

[34]

R. Pandharipande and R. P. Thomas,
Curve counting via stable pairs in the derived category,
Invent. Math. 178 (2009), 407–447.
Web of ScienceCrossrefGoogle Scholar

[35]

D. Piyaratne,
Fourier–M,ukai transforms and stability conditions on abelian threefolds
PhD thesis, University of Edinburgh, Edinburgh, 2014.
Google Scholar

[36]

B. Schmidt,
A generalized Bogomolov–Gieseker inequality for the smooth quadric threefold,
Bull. Lond. Math. Soc. 46 (2014), 915–923.
Web of ScienceCrossrefGoogle Scholar

[37]

R. P. Thomas,
A holomorphic Casson invariant for Calabi–Yau 3-folds and bundles on K3-fibrations, J. Differential Geom. 54 (2000), 367–438.
CrossrefGoogle Scholar

[38]

Y. Toda,
Moduli stacks and invariants of semistable objects on K3 surfaces,
Adv. Math. 217 (2008), no. 6, 2736–2781.
Web of ScienceCrossrefGoogle Scholar

[39]

Y. Toda,
Limit stable objects on Calabi–Yau 3-folds,
Duke Math. J. 149 (2009), 157–208.
Web of ScienceCrossrefGoogle Scholar

[40]

Y. Toda,
Curve counting theories via stable objects I: DT/PT correspondence,
J. Amer. Math. Soc. 23 (2010), 1119–1157.
CrossrefGoogle Scholar

[41]

Y. Toda,
Bogomolov–Gieseker type inequality and counting invariants,
J. Topol. 6 (2013), 217–250.
CrossrefWeb of ScienceGoogle Scholar

[42]

Y. Toda,
Curve counting theories via stable objects II. DT/ncDT flop formula,
J. reine angew. Math. 675 (2013), 1–51.
Web of ScienceGoogle Scholar

[43]

Y. Toda,
Stability conditions and extremal contractions,
Math. Ann. 357 (2013), 631–685.
CrossrefWeb of ScienceGoogle Scholar

[44]

Y. Toda,
Derived categories of coherent sheaves and counting invariants,
preprint (2014), http://arxiv.org/abs/1404.3814.

[45]

Y. Toda,
Stability conditions and birational geometry of projective surfaces,
Compos. Math. 150 (2014), no. 10, 1755–1788.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.