[1]

E. Artin,
Algebraic numbers and algebraic functions,
American Mathematical Society, Providence 1967.
Google Scholar

[2]

M. Artin,
Algebraization of formal moduli. I,
Global analysis,
University of Tokyo Press, Tokyo (1969), 21–71.
Google Scholar

[3]

A. Bellardini,
On the log-Picard functor for aligned degenerations of curves,
preprint (2015), http://arxiv.org/abs/1507.00506.

[4]

O. Biesel, D. Holmes and R. de Jong,
Néron models and the height jump divisor,
preprint (2014), http://arxiv.org/abs/1412.8207.

[5]

S. Bosch, W. Lütkebohmert and M. Raynaud,
Néron models,
Springer, Berlin 1990.
Google Scholar

[6]

P. Deligne,
Le lemme de Gabber,
Séminaire sur les pinceaux arithmétiques: La conjecture de Mordell (Paris 1983/84),
Astérisque 127,
Société Mathématique de France, Paris (1985), 131–150.
Google Scholar

[7]

P. Deligne and D. Mumford,
The irreducibility of the space of curves of given genus,
Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75–109.
CrossrefGoogle Scholar

[8]

B. Edixhoven,
On Néron models, divisors and modular curves,
J. Ramanujan Math. Soc. 13 (1998), no. 2, 157–194.
Google Scholar

[9]

B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure and A. Vistoli,
Fundamental algebraic geometry,
Math. Surveys Monogr. 123,
American Mathematical Society, Providence 2005.
Google Scholar

[10]

A. Grothendieck,
Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes,
Publ. Math. Inst. Hautes Études Sci. 8 (1961), 1–222.
Google Scholar

[11]

A. Grothendieck,
Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II,
Publ. Math. Inst. Hautes Études Sci. 17 (1963), 137–223.
Google Scholar

[12]

A. Grothendieck,
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II,
Publ. Math. Inst. Hautes Études Sci. 24 (1965), 1–231.
Google Scholar

[13]

A. Grothendieck,
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III,
Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255.
Google Scholar

[14]

A. Grothendieck,
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV,
Publ. Math. Inst. Hautes Études Sci. 32 (1967), 1–361.
Google Scholar

[15]

A. Grothendieck and M. Demazure,
Schémas en groupes I (SGA 3-1),
Lecture Notes in Math. 151,
Springer, Berlin 1970.
Google Scholar

[16]

A. Grothendieck, M. Raynaud and D. S. Rim,
Seminaire de géométrie algébrique Du Bois-Marie 1967–1969. Groupes de monodromie en géométrie algébrique (SGA 7 I),
Lect. Notes in Math. 288,
Springer, Berlin 1972.
Google Scholar

[17]

R. Hain,
Normal functions and the geometry of moduli spaces of curves,
Handbook of moduli. Volume I,
Adv. Lect. Math. (ALM) 24,
International Press, Sommerville (2013), 527–578.
Google Scholar

[18]

D. Holmes,
A Néron model of the universal jacobian,
preprint (2014), http://arxiv.org/abs/1412.2243.

[19]

D. Holmes,
Quasi-compactness of Néron models, and an application to torsion points,
preprint (2016), http://arxiv.org/abs/1604.01155.

[20]

D. Holmes,
Torsion points and height jumping in higher-dimensional families of abelian varieties,
preprint (2016), http://arxiv.org/abs/1604.04563.

[21]

A. J. de Jong,
Smoothness, semi-stability and alterations,
Publ. Math. Inst. Hautes Études Sci. 83 (1996), 51–93.
CrossrefGoogle Scholar

[22]

G. Laumon and L. Moret-Bailly,
Champs algébriques,
Ergeb. Math. Grenzgeb. (3) 39,
Springer, Berlin 2000.
Google Scholar

[23]

Q. Liu,
Algebraic geometry and arithmetic curves,
Oxf. Grad. Texts Math. 6,
Oxford University Press, Oxford 2002.
Google Scholar

[24]

W. Lütkebohmert,
On compactification of schemes,
Manuscripta Math. 80 (1993), no. 1, 95–111.
CrossrefGoogle Scholar

[25]

A. Néron,
Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,
Publ. Math. Inst. Hautes Études Sci. 21 (1964), 1–128.
Google Scholar

[26]

M. Raynaud,
Faisceaux amples sur les schémas en groupes et les espaces homogènes,
Lect. Notes in Math. 119,
Springer, Berlin 1970.
Google Scholar

[27]

M. Raynaud,
Spécialisation du foncteur de Picard,
Publ. Math. Inst. Hautes Études Sci. 38 (1970), 27–76.
CrossrefGoogle Scholar

[28]

M. Raynaud,
Jacobienne des courbes modulaires et opérateurs de Hecke,
Courbes modulaires et courbes de Shimura,
Astérisque 196–197,
Société Mathématique de France, Paris (1991), 9–25.
Google Scholar

[29]

M. Raynaud and L. Gruson,
Critères de platitude et de projectivité. Techniques de “platification” d’un module,
Invent. Math. 13 (1971), 1–89.
CrossrefGoogle Scholar

[30]

J. H. Silverman,
Heights and the specialization map for families of abelian varieties,
J. reine angew. Math. 342 (1983), 197–211.
Google Scholar

[31]

Stacks project, 2013, http://stacks.math.columbia.edu.

[32]

J. Tate,
Variation of the canonical height of a point depending on a parameter,
Amer. J. Math. 105 (1983), no. 1, 287–294.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.