[1]

K. Ardakov and S.â€‰J. Wadsley,
On irreducible representations of compact *p*-adic analytic groups,
Ann. of Math. (2) 178 (2013), 453â€“557.
WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[2]

K. Ardakov and S.â€‰J. Wadsley,
$\stackrel{\xe2\u015a\u02d8}{\mathcal{\u0111\u0165\u2019\u017a}}$-modules on rigid analytic spaces II,
preprint (2015), https://arxiv.org/abs/1502.01273.

[3]

K. Ardakov and S.â€‰J. Wadsley,
$\stackrel{\xe2\u015a\u02d8}{\mathcal{\u0111\u0165\u2019\u017a}}$-modules on rigid analytic spaces III,
preprint (2015).

[4]

M.â€‰F. Atiyah and I.â€‰G. Macdonald,
Introduction to commutative algebra,
Addison-Wesley, Reading 1969.
GoogleÂ Scholar

[5]

A. Beilinson and J. Bernstein,
Localisation de $\mathrm{\u0111\u0165\u201d\xa4}$-modules,
C. R. Acad. Sci. Paris. SĂ©r. I Math. 292 (1991), no. 1, 15â€“18.
GoogleÂ Scholar

[6]

A. Beilinson and J. Bernstein,
A proof of Jantzen conjectures,
I.â€‰M. Gelâ€™fand seminar,
Adv. Sov. Math. 16,
American Mathematical Society, Providence (1993), 1â€“50.
GoogleÂ Scholar

[7]

O. Ben-Bassat and K. Kremnizer,
Non-Archimedean analytic geometry as relative algebraic geometry,
preprint (2013), https://arxiv.org/abs/1312.0338.

[8]

V.â€‰G. Berkovich,
Ă‰tale cohomology for non-Archimedean analytic spaces,
Publ. Math. Inst. Hautes Ă‰tudes Sci. 78 (1993), 5â€“161.
CrossrefGoogleÂ Scholar

[9]

I.â€‰N. BernĹˇteÄn,
Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients,
Funktsional. Anal. i Prilozhen. 5 (1971), no. 2, 1â€“16.
GoogleÂ Scholar

[10]

P. Berthelot,
$\mathcal{\u0111\u0165\u2019\u017a}$-modules arithmĂ©tiques I. OpĂ¨rateurs diffĂ©rentiels de niveau fini,
Ann. Sci. Ă‰c. Norm. SupĂ©r. (4) 29 (1996), no. 2, 185â€“272.
GoogleÂ Scholar

[11]

S. Bosch, U. GĂĽntzer and R. Remmert,
Non-Archimedean analysis,
Springer, Berlin 1984.
GoogleÂ Scholar

[12]

S. Bosch and W. LĂĽtkebohmert,
Formal and rigid geometry. I. Rigid spaces,
Math. Ann. 295 (1993), no. 2, 291â€“317.
CrossrefGoogleÂ Scholar

[13]

N. Bourbaki,
Elements of mathematics. Algebra I. Chapters 1â€“3,
Springer, Berlin 1998.
GoogleÂ Scholar

[14]

B. Conrad,
Relative ampleness in rigid geometry,
Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1049â€“1126.
CrossrefGoogleÂ Scholar

[15]

J. Fresnel and M. van der Put,
Rigid analytic geometry and its applications,
Progr. Math. 218,
BirkhĂ¤user, Boston 2004.
GoogleÂ Scholar

[16]

A. Grothendieck,
Ă‰lĂ©ments de gĂ©omĂ©trie algĂ©brique. III. Ă‰tude cohomologique des faisceaux cohĂ©rents. I,
Publ. Math. Inst. Hautes Ă‰tudes Sci. 11 (1962), 349â€“511.
GoogleÂ Scholar

[17]

R. Hartshorne,
Algebraic Geometry,
Grad. Texts in Math. 52,
Springer, New York 1997.
GoogleÂ Scholar

[18]

P.â€‰T. Johnstone,
Sketches of an elephant: A topos theory compendium. Vol. 2,
Oxford Logic Guides 44,
Oxford University Press, Oxford 2002.
GoogleÂ Scholar

[19]

M. Kashiwara,
Algebraic study of systems of partial differential equations,
MĂ©m. Soc. Math. Fr. (N.S.) 63 (1995), 1â€“72.
GoogleÂ Scholar

[20]

R. Kiehl,
Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie,
Invent. Math. 2 (1967), 256â€“273.
CrossrefGoogleÂ Scholar

[21]

H. Li and F. Van Oystaeyen,
Zariskian filtrations,
Kluwer, Dordrecht 1996.
GoogleÂ Scholar

[22]

D. Patel, T. Schmidt and M. Strauch,
Locally analytic representations and sheaves on the Bruhatâ€“Tits building,
Algebra Number Theory 8 (2014), no. 6, 1365â€“1445.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[23]

G.â€‰S. Rinehart,
Differential forms on general commutative algebras,
Trans. Amer. Math. Soc. 108 (1963), 195â€“222.
CrossrefGoogleÂ Scholar

[24]

T. Schmidt,
Analytic vectors in continuous *p*-adic representations,
Compos. Math. 145 (2009), no. 1, 247â€“270.
WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[25]

P. Schneider and J. Teitelbaum,
Locally analytic distributions and *p*-adic representation theory, with applications to ${\mathrm{GL}}_{2}$,
J. Amer. Math. Soc. 15 (2002), no. 2, 443â€“468.
GoogleÂ Scholar

[26]

P. Schneider and J. Teitelbaum,
Algebras of *p*-adic distributions and admissible representations,
Invent. Math. 153 (2003), no. 1, 145â€“196.
CrossrefGoogleÂ Scholar

[27]

Y. Soibelman,
On non-commutative analytic spaces over non-Archimedean fields,
Homological mirror symmetry,
Lecture Notes in Phys. 757,
Springer, Berlin (2009), 221â€“247.
GoogleÂ Scholar

[28]

G. Tamme,
Introduction to Ă©tale cohomology,
Universitext,
Springer, Berlin 1994.
GoogleÂ Scholar

[29]

J. Tate,
Rigid analytic spaces,
Invent. Math. 12 (1971), 257â€“289.
CrossrefGoogleÂ Scholar

[30]

C.â€‰A. Weibel,
An introduction to homological algebra,
Cambridge Stud. Adv. Math. 38,
Cambridge University Press, Cambridge, 1994.
GoogleÂ Scholar

[31]

O. Zariski and P. Samuel,
Commutative algebra. Vol. II,
Grad. Texts in Math. 29,
Springer, New York 1975.
GoogleÂ Scholar

[32]

Stacks Project Authors,
Stacks Project,
preprint (2014), http://stacks.math.columbia.edu.

## CommentsÂ (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.