[1]

V. G. Berkovich,
Spectral theory and analytic geometry over non-Archimedean fields,
Math. Surveys Monogr. 33,
American Mathematical Society, Providence 1990.
Google Scholar

[2]

C. Birkar, P. Cascini, C. D. Hacon and J. McKernan,
Existence of minimal models for varieties of log general type,
J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
Google Scholar

[3]

F. Campana,
Connexité rationnelle des variétés de Fano,
Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), no. 5, 539–545.
CrossrefGoogle Scholar

[4]

O. Debarre,
Higher-dimensional algebraic geometry,
Universitext,
Springer, New York 2001.
Google Scholar

[5]

T. de Fernex, J. Kollár and C. Xu,
The dual complex of singularities,
preprint (2012), http://arxiv.org/abs/1212.1675.

[6]

T. Graber, J. Harris and J. Starr,
Families of rationally connected varieties,
J. Amer. Math. Soc. 16 (2003), no. 1, 57–67.
CrossrefGoogle Scholar

[7]

M. J. Greenberg,
Rational points in Henselian discrete valuation rings,
Publ. Math. Inst. Hautes Études Sci. 31 (1966), 59–64.
CrossrefGoogle Scholar

[8]

A. Grothendieck,
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III,
Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255.
Google Scholar

[9]

A. Hogadi and C. Xu,
Degenerations of rationally connected varieties,
Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949.
CrossrefGoogle Scholar

[10]

J. Kollár,
Rational curves on algebraic varieties,
Ergeb. Math. Grenzgeb. (3) 32,
Springer, Berlin 1996.
Google Scholar

[11]

J. Kollár,
A conjecture of Ax and degenerations of Fano varieties,
Israel J. Math. 162 (2007), 235–251.
Web of ScienceCrossrefGoogle Scholar

[12]

J. Kollár, Y. Miyaoka and S. Mori,
Rationally connected varieties,
J. Algebraic Geom. 1 (1992), no. 3, 429–448.
Google Scholar

[13]

J. Kollár and S. Mori,
Birational geometry of algebraic varieties,
Cambridge Tracts in Math. 134,
Cambridge University Press, Cambridge 1998.
Google Scholar

[14]

J. Kollár, J. Nicaise and C. Xu,
Semi-stable extensions over 1-dimensional bases,
preprint (2015), http://arxiv.org/abs/1510.02446.

[15]

M. Kontsevich and Y. Soibelman,
Affine structures and non-Archimedean analytic spaces,
The unity of mathematics,
Progr. Math. 244,
Birkhäuser, Boston (2006), 321–385.
Google Scholar

[16]

M. Mustaţă and J. Nicaise,
Weight functions on non-Archimedean analytic spaces and the Kontsevich–Soibelman skeleton,
preprint (2013), http://arxiv.org/abs/1212.6328v3.

[17]

J. Nicaise,
Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology,
J. Algebraic Geom. 20 (2011), no. 2, 199–237.
CrossrefWeb of ScienceGoogle Scholar

[18]

J. Nicaise,
Berkovich skeleta and birational geometry,
preprint (2014), http://arxiv.org/abs/1409.5229.

[19]

J. Nicaise and C. Xu,
The essential skeleton of a degeneration of algebraic varieties,
preprint (2013), http://arxiv.org/abs/1307.4041.

[20]

P. Vojta,
Nagata’s embedding theorem,
preprint (2007), http://arxiv.org/abs/0706.1907.

[21]

T. Y. Yu,
Gromov compactness in non-archimedean analytic geometry,
preprint (2014), http://arxiv.org/abs/1401.6452.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.