[1]

B. Berndtsson and N. Sibony,
The $\overline{\partial}$-equation on a positive current,
Invent. Math. 147 (2002), 371–428.
Google Scholar

[2]

F. Bogomolov,
Complex manifolds and algebraic foliations,
RIMS-1084, Kyoto 1996.
Google Scholar

[3]

T. Burel,
Déformations de feuilletages à feuilles complexes,
Thèse de doctorat, Institut de Mathématiques de Bourgogne, Dijon 2011.
Google Scholar

[4]

K. Dabrowski,
Moduli spaces for Hopf surfaces,
Math. Ann. 259 (1982), 201–225.
CrossrefGoogle Scholar

[5]

J. P. Demailly and H. Gaussier,
Algebraic embeddings of smooth almost complex structures,
preprint (2014), http://arxiv.org/abs/1412.2899v1.

[6]

A. Douady,
Le problème des modules pour les variétés analytiques complexes,
Sém. Bourbaki 9 (1964/65), Exp. No. 277.
Google Scholar

[7]

A. Douady,
Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné,
Ann. Inst. Fourier (Grenoble) 16 (1966), 1–95.
CrossrefGoogle Scholar

[8]

A. El Kacimi and J. Slimène,
Cohomologie de Dolbeault le long des feuilles de certains feuilletages complexes,
Ann. Inst. Fourier (Grenoble) 60 (2010), 727–757.
CrossrefGoogle Scholar

[9]

O. Forster and K. Knorr,
Relativ-analytische Räume und die Kohärenz von Bildgarben,
Invent. Math. 16 (1972), 113–160.
CrossrefGoogle Scholar

[10]

J. Girbau, A. Haefliger and D. Sundararaman,
On deformations of transversely holomorphic foliations,
J. reine angew. Math. 345 (1983), 122–147.
Google Scholar

[11]

E. Ghys and A. Verjovsky,
Locally free holomorphic actions of the complex affine group,
Geometric study of foliations (Tokyo 1993),
World Scientific, River Edge (1994), 201–217.
Google Scholar

[12]

R. S. Hamilton,
Deformation theory of foliations,
preprint (1978).

[13]

R. S. Hamilton,
The inverse function theorem of Nash and Moser,
Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222.
CrossrefGoogle Scholar

[14]

I. Henkin and A. Iordan,
Regularity of $\overline{\partial}$ on pseudoconcave compacts and applications,
Asian J. Math. 4 (2000), 855–884;
erratum, Asian J. Math. 7 (2003), 147–148.
Google Scholar

[15]

K. Kodaira,
Complex manifolds and deformation of complex structures,
Classics Math.,
Springer, Berlin 2005.
Google Scholar

[16]

K. Kodaira and D. C. Spencer,
On deformations of complex analytic structures I,
Ann. of Math. (2) 67 (1958), 328–402.
CrossrefGoogle Scholar

[17]

K. Kodaira and D. C. Spencer,
On deformations of complex analytic structures II,
Ann. of Math. (2) 67 (1958), 403–466.
CrossrefGoogle Scholar

[18]

M. Kuranishi,
On locally complete families of complex analytic structures,
Ann. of Math. (2) 75 (1962), 536–577.
CrossrefGoogle Scholar

[19]

M. Kuranishi,
New proof for the existence of locally complete families of complex structures,
Proceedings of the conference on complex analysis (Minneapolis 1964),
Springer, Berlin (1965), 142–154.
Google Scholar

[20]

M. Kuranishi,
Deformations of compact complex manifolds,
Les presses de l’université de Montréal, Montréal 1971.
Google Scholar

[21]

L. Meersseman,
A new geometric construction of compact complex manifolds in any dimension,
Math. Ann. 317 (2000), 79–115.
CrossrefGoogle Scholar

[22]

L. Meersseman,
Feuilletages par variétés complexes et problèmes d’uniformisation,
Panor. Synthèses 34/35 (2011), 205–257.
Google Scholar

[23]

L. Meersseman,
Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds,
Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 495–525.
CrossrefGoogle Scholar

[24]

L. Meersseman and A. Verjovsky,
On the moduli space of certain smooth codimension-one foliations of the 5-sphere,
J. reine angew. Math. 632 (2009), 143–202.
Web of ScienceGoogle Scholar

[25]

J. Morrow and K. Kodaira,
Complex manifolds,
Holt, Rinehart and Winston, New York 1971.
Google Scholar

[26]

A. Newlander and L. Nirenberg,
Complex analytic coordinates in almost complex manifolds,
Ann. of Math. (2) 65 (1957), 391–404.
CrossrefGoogle Scholar

[27]

M. Schneider,
Halbstetigkeitssätze für relativ analytische Räume,
Invent. Math. 16 (1972), 161–176.
CrossrefGoogle Scholar

[28]

Y. T. Siu,
Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension $\text{}\u2a7e3$,
Ann. of Math. (2) 151 (2000), 1217–1243.
Google Scholar

[29]

J. Slimène,
Deux exemples de calcul explicite de cohomologie de Dolbeault feuilletée,
Proyecciones 27 (2008), 63–80.
Google Scholar

[30]

D. Sundararaman,
Moduli, deformations and classifications of compact complex manifolds,
Research Notes in Math. 45,
Pitman, Boston 1980.
Google Scholar

[31]

J. J. Wavrik,
Obstructions to the existence of a space of moduli,
Global analysis. Papers in honor of K. Kodaira,
Princeton University Press, Princeton (1969), 403–414.
Google Scholar

[32]

J. J. Wavrik,
Deforming cohomology classes,
Trans. Amer. Math. Soc. 181 (1973), 341–350.
CrossrefGoogle Scholar

[33]

J. Wehler,
Versal deformation of Hopf surfaces,
J. reine angew. Math. 328 (1981), 22–32.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.