[1]

L. Battisti,
LVMB manifolds and quotients of toric varieties,
Math. Z. 275 (2013), no. 1–2, 549–568.
CrossrefWeb of ScienceGoogle Scholar

[2]

S. Bochner and D. Montgomery,
Locally compact groups of differentiable transformations,
Ann. of Math. (2) 47 (1946), 639–653.
CrossrefGoogle Scholar

[3]

F. Bosio,
Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano–Verjovsky,
Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1259–1297.
CrossrefGoogle Scholar

[4]

F. Bosio and L. Meersseman,
Real quadrics in ${\mathbf{C}}^{n}$, complex manifolds and convex polytopes,
Acta Math. 197 (2006), no. 1, 53–127.
Google Scholar

[5]

V. M. Buchstaber and T. E. Panov,
Torus actions and their applications in topology and combinatorics,
Univ. Lecture Ser. 24,
American Mathematical Society, Providence 2002.
Google Scholar

[6]

E. Calabi and B. Eckmann,
A class of compact, complex manifolds which are not algebraic,
Ann. of Math. (2) 58 (1953), 494–500.
CrossrefGoogle Scholar

[7]

D. A. Cox, J. B. Little and H. Schenck,
Toric varieties,
Grad. Stud. Math. 124,
American Mathematical Society, Providence 2011.
Google Scholar

[8]

T. Delzant,
Hamiltoniens périodiques et images convexes de l’application moment,
Bull. Soc. Math. France 116 (1988), no. 3, 315–339.
CrossrefGoogle Scholar

[9]

T. Frankel,
Fixed points and torsion on Kähler manifolds,
Ann. of Math. (2) 70 (1959), 1–8.
CrossrefGoogle Scholar

[10]

W. Fulton,
Introduction to toric varieties,
Ann. of Math. Stud. 131,
Princeton University Press, Princeton 1993.
Google Scholar

[11]

G. Hochschild,
The structure of Lie groups,
Holden-Day, San Francisco 1965.
Google Scholar

[12]

H. Ishida and Y. Karshon,
Completely integrable torus actions on complex manifolds with fixed points,
Math. Res. Lett. 19 (2012), no. 6, 1283–1295.
CrossrefGoogle Scholar

[13]

S. Kobayashi and K. Nomizu,
Foundations of differential geometry. Vol. II,
Interscience Tracts Pure Appl. Math. 15,
John Wiley & Sons, New York 1969.
Google Scholar

[14]

S. López de Medrano and A. Verjovsky,
A new family of complex, compact, non-symplectic manifolds,
Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 253–269.
CrossrefGoogle Scholar

[15]

Z. Lü and T. Panov,
Moment-angle complexes from simplicial posets,
Cent. Eur. J. Math. 9 (2011), no. 4, 715–730.
Web of ScienceCrossrefGoogle Scholar

[16]

M. Masuda,
Unitary toric manifolds, multi-fans and equivariant index,
Tohoku Math. J. (2) 51 (1999), no. 2, 237–265.
CrossrefGoogle Scholar

[17]

L. Meersseman,
A new geometric construction of compact complex manifolds in any dimension,
Math. Ann. 317 (2000), no. 1, 79–115.
CrossrefGoogle Scholar

[18]

L. Meersseman and A. Verjovsky,
Holomorphic principal bundles over projective toric varieties,
J. reine angew. Math. 572 (2004), 57–96.
Google Scholar

[19]

T. Oda,
Convex bodies and algebraic geometry,
Ergeb. Math. Grenzgeb. (3) 15,
Springer, Berlin 1988.
Google Scholar

[20]

T. Panov and Y. Ustinovsky,
Complex-analytic structures on moment-angle manifolds,
Mosc. Math. J. 12 (2012), no. 1, 149–172., 216.
CrossrefGoogle Scholar

[21]

J. Tambour,
LVMB manifolds and simplicial spheres,
Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1289–1317.
CrossrefGoogle Scholar

[22]

N. T. Zung and N. V. Minh,
Geometry of nondegenerate ${\mathbb{R}}^{n}$-actions on *n*-manifolds,
J. Math. Soc. Japan 66 (2014), no. 3, 839–894.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.