Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie

IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

See all formats and pricing
More options …
Volume 2019, Issue 751


Complex manifolds with maximal torus actions

Hiroaki IshidaORCID iD: https://orcid.org/0000-0003-0197-9217
Published Online: 2016-07-22 | DOI: https://doi.org/10.1515/crelle-2016-0023


In this paper, we introduce the notion of maximal actions of compact tori on smooth manifolds and study compact connected complex manifolds equipped with maximal actions of compact tori. We give a complete classification of such manifolds, in terms of combinatorial objects, which are triples (Δ,𝔥,G) of nonsingular complete fan Δ in 𝔤, complex vector subspace 𝔥 of 𝔤 and compact torus G satisfying certain conditions. We also give an equivalence of categories with suitable definitions of morphisms in these families, like toric geometry. We obtain several results as applications of our equivalence of categories; complex structures on moment-angle manifolds, classification of holomorphic nondegenerate n-actions on compact connected complex manifolds of complex dimension n, and construction of concrete examples of non-Kähler manifolds.


  • [1]

    L. Battisti, LVMB manifolds and quotients of toric varieties, Math. Z. 275 (2013), no. 1–2, 549–568. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math. (2) 47 (1946), 639–653. CrossrefGoogle Scholar

  • [3]

    F. Bosio, Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano–Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1259–1297. CrossrefGoogle Scholar

  • [4]

    F. Bosio and L. Meersseman, Real quadrics in 𝐂n, complex manifolds and convex polytopes, Acta Math. 197 (2006), no. 1, 53–127. Google Scholar

  • [5]

    V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser. 24, American Mathematical Society, Providence 2002. Google Scholar

  • [6]

    E. Calabi and B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58 (1953), 494–500. CrossrefGoogle Scholar

  • [7]

    D. A. Cox, J. B. Little and H. Schenck, Toric varieties, Grad. Stud. Math. 124, American Mathematical Society, Providence 2011. Google Scholar

  • [8]

    T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339. CrossrefGoogle Scholar

  • [9]

    T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1–8. CrossrefGoogle Scholar

  • [10]

    W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton 1993. Google Scholar

  • [11]

    G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco 1965. Google Scholar

  • [12]

    H. Ishida and Y. Karshon, Completely integrable torus actions on complex manifolds with fixed points, Math. Res. Lett. 19 (2012), no. 6, 1283–1295. CrossrefGoogle Scholar

  • [13]

    S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts Pure Appl. Math. 15, John Wiley & Sons, New York 1969. Google Scholar

  • [14]

    S. López de Medrano and A. Verjovsky, A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 253–269. CrossrefGoogle Scholar

  • [15]

    Z. Lü and T. Panov, Moment-angle complexes from simplicial posets, Cent. Eur. J. Math. 9 (2011), no. 4, 715–730. Web of ScienceCrossrefGoogle Scholar

  • [16]

    M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. (2) 51 (1999), no. 2, 237–265. CrossrefGoogle Scholar

  • [17]

    L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), no. 1, 79–115. CrossrefGoogle Scholar

  • [18]

    L. Meersseman and A. Verjovsky, Holomorphic principal bundles over projective toric varieties, J. reine angew. Math. 572 (2004), 57–96. Google Scholar

  • [19]

    T. Oda, Convex bodies and algebraic geometry, Ergeb. Math. Grenzgeb. (3) 15, Springer, Berlin 1988. Google Scholar

  • [20]

    T. Panov and Y. Ustinovsky, Complex-analytic structures on moment-angle manifolds, Mosc. Math. J. 12 (2012), no. 1, 149–172., 216. CrossrefGoogle Scholar

  • [21]

    J. Tambour, LVMB manifolds and simplicial spheres, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1289–1317. CrossrefGoogle Scholar

  • [22]

    N. T. Zung and N. V. Minh, Geometry of nondegenerate n-actions on n-manifolds, J. Math. Soc. Japan 66 (2014), no. 3, 839–894. Google Scholar

About the article

Received: 2015-04-30

Revised: 2016-04-04

Published Online: 2016-07-22

Published in Print: 2019-06-01

The author was supported by JSPS Research Fellowships for Young Scientists.

Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019, Issue 751, Pages 121–184, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2016-0023.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christine Escher and Catherine Searle
The Journal of Geometric Analysis, 2018
Тарас Евгеньевич Панов and Taras Evgenievich Panov
Успехи математических наук, 2013, Volume 68, Number 3(411), Page 111

Comments (0)

Please log in or register to comment.
Log in