[1]

C. Arezzo, A. Ghigi and G. P. Pirola,
Symmetries, quotients and Kähler–Einstein metrics,
J. reine angew. Math. 591 (2006), 177–200.
Google Scholar

[2]

T. Aubin,
Equation de type Monge–Ampère sur les variétés kählériennes compactes,
Bull. Sci. Math. 102 (1978), 63–95.
Google Scholar

[3]

S. Bando and T. Mabuchi,
Uniqueness of Einstein–Kähler metrics modulo connected group actions,
Algebraic geometry (Sendai 1985),
Adv. Stud. Pure Math. 10,
Kinokuniya, Tokyo (1987), 11–40.
CrossrefGoogle Scholar

[4]

E. Bedford and B. A. Taylor,
Fine topology, Šilov boundary, and ${(d{d}^{c})}^{n}$,
J. Funct. Anal. 72 (1987), no. 2, 225–251.
Google Scholar

[5]

R. Berman,
A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics,
Adv. Math. 248 (2013), 1254–1297.
CrossrefGoogle Scholar

[6]

R. Berman and S. Boucksom,
Growth of balls of holomorphic sections and energy at equilibrium,
Invent. Math. 181 (2010), no. 2, 337–394.CrossrefGoogle Scholar

[7]

R. Berman, S. Boucksom, V. Guedj and A. Zeriahi,
A variational approach to complex Monge–Ampère equations,
Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245.
CrossrefGoogle Scholar

[8]

B. Berndtsson,
Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains,
Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1633–1662.
CrossrefGoogle Scholar

[9]

B. Berndtsson,
A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry,
Invent. Math 200 (2015), no. 1, 149–200.
CrossrefGoogle Scholar

[10]

Z. Błocki,
The Calabi–Yau theorem,
Complex Monge–Ampère equations and geodesics in the space of Kähler metrics,
Lecture Notes in Math. 2038,
Springer, Berlin (2012), 201–227.
Google Scholar

[11]

Z. Błocki and S. Kołodziej,
On regularization of plurisubharmonic functions on manifolds,
Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093.
CrossrefGoogle Scholar

[12]

S. Boucksom,
On the volume of a line bundle,
Internat. J. Math. 13 (2002), no. 10, 1043–1063.
CrossrefGoogle Scholar

[13]

S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi,
Monge–Ampère equations in big cohomology classes,
Acta Math. 205 (2010), 199–262.
CrossrefGoogle Scholar

[14]

S. Boucksom, C. Favre and M. Jonsson,
Singular semipositive metrics in non-Archimedean geometry,
J. Algebraic Geom. 25 (2016), 77–139.
Google Scholar

[15]

S. Boucksom and V. Guedj,
Kähler–Ricci flows on singular varieties,
lecture notes (2012), www.math.univ-toulouse.fr/~guedj/fichierspdf/NotesBoucksomGuedj.pdf.

[16]

N. Bourbaki,
Eléments de mathématiques. Topologie générale. Chapitre 9,
Springer, Berlin 2007.
Google Scholar

[17]

M. Brion,
Introduction to actions of algebraic groups,
Lecture Notes (2009), www-fourier.ujf-grenoble.fr/~mbrion/notes.html.

[18]

F. Campana, H. Guenancia and M. Paun,
Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields,
Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 879–916.
CrossrefGoogle Scholar

[19]

J. Cheeger, T. Colding and G. Tian,
On the singularities of spaces with bounded Ricci curvature,
Geom. Funct. Anal. 12 (2002), 873–914.
CrossrefGoogle Scholar

[20]

X. X. Chen,
On the lower bound of the Mabuchi energy and its application,
Int. Math. Res. Not. IMRN 2000 (2000), no. 12, 607–623.
CrossrefGoogle Scholar

[21]

X. X. Chen, S. Donaldson and S. Sun,
Kähler–Einstein metrics and stability,
Int. Math. Res. Not. IMRN 2014 (2014), no. 8, 2119–2125.
CrossrefGoogle Scholar

[22]

X. X. Chen, S. Donaldson and S. Sun,
Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi $ and completion of the main proof,
J. Amer. Math. Soc. 28 (2015), no. 1, 235–278.
Google Scholar

[23]

D. Coman, V. Guedj and A. Zeriahi,
Extension of plurisubharmonic functions with growth control,
J. reine angew. Math. 676 (2013), 33–49.
Google Scholar

[24]

T. Darvas,
The Mabuchi geometry of finite energy classes,
preprint (2014), https://arxiv.org/abs/1409.2072.

[25]

T. Darvas and Y. Rubinstein,
Tian’s properness conjectures and Finsler geometry of the space of Kahler metrics,
preprint (2015), http://arxiv.org/abs/1506.07129.

[26]

V. Datar and G. Székelyhidi,
Kähler–Einstein metrics along the smooth continuity method,
Geom. Funct. Anal. (2016), 10.1007/s00039-016-0377-4.
Google Scholar

[27]

J. P. Demailly,
Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines,
Mém. Soc. Math. Fr. (N.S.) 19 (1985), 1–124.
Google Scholar

[28]

J. P. Demailly,
Regularization of closed positive currents and intersection theory,
J. Algebraic Geom. 1 (1992), no. 3, 361–409.
Google Scholar

[29]

J. P. Demailly,
Théorie de Hodge ${L}^{2}$ et théorèmes d’annulation,
Introduction à la théorie de Hodge,
Panor. Synth‘eses 3,
Société Mathématique de France, Paris (1996), 3–111.
Google Scholar

[30]

A. Dembo and O. Zeitouni,
Large deviations techniques and applications. Corrected reprint of the second (1998) edition,
Stoch. Model. Appl. Probab. 38,
Springer, Berlin 2010.
Google Scholar

[31]

W.-Y. Ding,
Remarks on the existence problem of positive Kähler–Einstein metrics,
Math. Ann. 282 (1988), 463–471.
CrossrefGoogle Scholar

[32]

W.-Y. Ding and G. Tian,
Kähler–Einstein metrics and the generalized Futaki invariant,
Invent. Math. 110 (1992), no. 2, 315–335.
CrossrefGoogle Scholar

[33]

S. K. Donaldson and S. Sun,
Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry,
Acta Math. 213 (2014), no. 1, 63–106.
CrossrefGoogle Scholar

[34]

P. Eyssidieux, V. Guedj and A. Zeriahi,
Singular Kähler–Einstein metrics,
J. Amer. Math. Soc. 22 (2009), 607–639.
CrossrefGoogle Scholar

[35]

P. Eyssidieux, V. Guedj and A. Zeriahi,
Viscosity solutions to degenerate Complex Monge–Ampère equations,
Comm. Pure Appl. Math. 64 (2011), 1059–1094.
CrossrefGoogle Scholar

[36]

J. E. Fornaess and R. Narasimhan,
The Levi problem on complex spaces with singularities,
Math. Ann. 248 (1980), no. 1, 47–72.
CrossrefGoogle Scholar

[37]

A. Ghigi and J. Kollár,
Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres,
Comment. Math. Helv. 82 (2007), 877–902.
Google Scholar

[38]

H. Grauert and R. Remmert,
Plurisubharmonische Funktionen in komplexen Räumen,
Math. Z. 65 (1956), 175–194.
CrossrefGoogle Scholar

[39]

V. Guedj and A. Zeriahi,
The weighted Monge–Ampère energy of quasiplurisubharmonic functions,
J. Funct. Anal. 250 (2007), 442–482.
CrossrefGoogle Scholar

[40]

V. Guedj and A. Zeriahi,
Stability of solutions to complex Monge-Ampère equations in big cohomology classes,
Math. Res. Lett. 19 (2012), no. 5, 1025–1042.
CrossrefGoogle Scholar

[41]

S. Izumi,
Linear complementary inequalities for orders of germs of analytic functions,
Invent. Math. 65 (1982), no. 3, 459–471.
CrossrefGoogle Scholar

[42]

T. D. Jeffres, R. Mazzeo and Y. A. Rubinstein,
Kähler–Einstein metrics with edge singularities,
Ann. of Math. (2) 183 (2016), 95–176.
Google Scholar

[43]

J. Keller,
Ricci iterations on Kähler classes,
J. Inst. Math. Jussieu 8 (2009), no. 4, 743–768.
CrossrefGoogle Scholar

[44]

J. Kollár,
Rational curves on algebraic varieties,
Ergeb. Math. Grenzgeb. (3) 32,
Springer, Berlin 1996.
Google Scholar

[45]

J. Kollár,
Singularities of pairs,
Algebraic geometry (Santa Cruz 1995),
Proc. Sympos. Pure Math. 62. Part 1,
American Mathematical Society, Providence (1997), 221–287.
Google Scholar

[46]

Y. Lee,
Chow stability criterion in terms of log canonical threshold,
J. Korean Math. Soc. 45 (2008), no. 2, 467–477.
CrossrefGoogle Scholar

[47]

C. Li and C. Y. Xu,
Special test configurations and *K*-stability of Fano varities,
Ann. of Math. (2) 180 (2014), no. 1, 197–232.
CrossrefGoogle Scholar

[48]

H. Li,
On the lower bound of the *K*-energy and *F*-functional,
Osaka J. Math. 45 (2008), no. 1, 253–264.
Google Scholar

[49]

Y. Matsushima,
Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variétié kählérienne,
Nagoya Math. J. 11 (1957), 145–150.
CrossrefGoogle Scholar

[50]

M. Păun,
Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds,
Chin. Ann. Math. Ser. B 29 (2008), no. 6, 623–630.
CrossrefGoogle Scholar

[51]

D. H. Phong, N. Sesum and J. Sturm,
Multiplier ideal sheaves and the Kähler–Ricci flow,
Comm. Anal. Geom. 15 (2007), no. 3, 613–632.
CrossrefGoogle Scholar

[52]

D. H. Phong, J. Song, J. Sturm and B. Weinkove,
The Kähler–Ricci flow with positive bisectional curvature,
Invent. Math. 173 (2008), no. 3, 651–665.
CrossrefGoogle Scholar

[53]

D. H. Phong, J. Song, J. Sturm and B. Weinkove,
The Moser–Trudinger inequality on Kähler–Einstein manifolds,
Amer. J. Math. 130 (2008), no. 4, 1067–1085.
CrossrefGoogle Scholar

[54]

D. H. Phong and J. Sturm,
Lectures on stability and constant scalar curvature,
Handbook of geometric analysis. No. 3,
Adv. Lect. Math. (ALM) 14,
International Press, Somerville (2010), 357–436.
Google Scholar

[55]

Y. Rubinstein,
Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics,
Adv. Math. 218 (2008), no. 5, 1526–1565.
CrossrefGoogle Scholar

[56]

N. Sesum and G. Tian,
Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman),
J. Inst. Math. Jussieu 7 (2008), no. 3, 575–587.
Google Scholar

[57]

Y. T. Siu,
Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics,
DMV Seminar 8,
Birkhäuser, Basel 1987.
Google Scholar

[58]

H. Skoda,
Sous-ensembles analytiques d’ordre fini ou infini dans ${\u2102}^{n}$,
Bull. Soc. Math. France 100 (1972), 353–408.
Google Scholar

[59]

J. Song and G. Tian,
The Kähler–Ricci flow through singularities,
preprint (2009), https://arxiv.org/abs/0909.4898.

[60]

J. Song and G. Tian,
Canonical measures and Kähler–Ricci flow,
J. Amer. Math. Soc. 25 (2012), no. 2, 303–353.
CrossrefGoogle Scholar

[61]

G. Tian,
On Kähler–Einstein metrics on certain Kähler manifolds with ${c}_{1}(M)>0$,
Invent. Math. 89 (1987), no. 2, 225–246.
Google Scholar

[62]

G. Tian,
Kähler–Einstein metrics with positive scalar curvature,
Invent. Math. 130 (1997), 239–265.
Google Scholar

[63]

G. Tian,
Canonical metrics in Kähler geometry,
Lect. Math. ETH Zürich,
Birkhäuser, Basel 2000.
Google Scholar

[64]

G. Tian,
Existence of Einstein metrics on Fano manifolds,
Metric and differential geometry (Tianjin and Beijing 2009),
Progr. Math. 297,
Springer, Berlin (2012), 119–159.
Google Scholar

[65]

G. Tian,
K-stability implies CM-stability,
preprint (2014), http://arxiv.org/abs/1409.7836.

[66]

G. Tian,
K-stability and Kähler–Einstein metrics,
Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156.
CrossrefGoogle Scholar

[67]

G. Tian and S. T. Yau,
Kähler–Einstein metrics on complex surfaces with ${c}_{1}>0$,
Comm. Math. Phys. 112 (1987), no. 1, 175–203.
Google Scholar

[68]

G. Tian and X. Zhu,
Convergence of Kähler–Ricci flow,
J. Amer. Math. Soc. 20 (2007), no. 3, 675–699.
CrossrefGoogle Scholar

[69]

H. Tsuji,
Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type,
Math. Ann. 281 (1988), no. 1, 123–133.
CrossrefGoogle Scholar

[70]

S. T. Yau,
On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I,
Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.
CrossrefGoogle Scholar

[71]

L. Yi,
A Bando–Mabuchi uniqueness theorem,
preprint (2013), https://arxiv.org/abs/1301.2847.

[72]

A. Zeriahi,
Volume and capacity of sublevel sets of a Lelong class of psh functions,
Indiana Univ. Math. J. 50 (2001), no. 1, 671–703.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.