[1]

D. Borthwick,
Spectral theory of infinite-area hyperbolic surfaces,
Progr. Math. 256,
Birkhäuser, Boston 2007.
Google Scholar

[2]

J. Bourgain,
Partial quotients and representation of rational numbers,
C. R. Math. Acad. Sci. Paris 350 (2012), no. 15–16, 727–730.
CrossrefGoogle Scholar

[3]

J. Bourgain,
Some Diophantine applications of the theory of group expansion,
Thin groups and superstrong approximation,
Math. Sci. Res. Inst. Publ. 61,
Cambridge University Press, Cambridge (2014), 1–22.
Google Scholar

[4]

J. Bourgain, A. Gamburd and P. Sarnak,
Generalization of Selberg’s $\frac{3}{16}$ theorem and affine sieve,
Acta Math. 207 (2011), no. 2, 255–290.
Google Scholar

[5]

J. Bourgain and A. Kontorovich,
On Zaremba’s conjecture,
Ann. of Math. (2) 180 (2014), no. 1, 137–196.
CrossrefGoogle Scholar

[6]

J. Bourgain and P. P. Varjú,
Expansion in ${\mathrm{SL}}_{d}(\mathbf{Z}/q\mathbf{Z}),q$ arbitrary,
Invent. Math. 188 (2012), no. 1, 151–173.
Google Scholar

[7]

D. Dolgopyat,
On decay of correlations in Anosov flows,
Ann. of Math. (2) 147 (1998), no. 2, 357–390.
CrossrefGoogle Scholar

[8]

D. Frolenkov and I. D. Kan,
A strengthening of a theorem of Bourgain–Kontorovich II,
Mosc. J. Comb. Number Theory 4 (2014), no. 1, 78–117.
Google Scholar

[9]

A. Gamburd,
On the spectral gap for infinite index “congruence” subgroups of ${\mathrm{SL}}_{2}(\mathbf{Z})$,
Israel J. Math. 127 (2002), 157–200.
Google Scholar

[10]

S. Huang,
An improvement to Zaremba’s conjecture,
Geom. Funct. Anal. 25 (2015), no. 3, 860–914.
CrossrefWeb of ScienceGoogle Scholar

[11]

A. Kontorovich,
From Apollonius to Zaremba: Local-global phenomena in thin orbits,
Bull. Amer. Math. Soc. (N.S.) 50 (2013), 187–228.
CrossrefGoogle Scholar

[12]

S. P. Lalley,
Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits,
Acta Math. 163 (1989), no. 1–2, 1–55.
CrossrefGoogle Scholar

[13]

A. Mohammadi and H. Oh,
Matrix coefficients, counting and primes for orbits of geometrically finite groups,
J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 837–897.
CrossrefGoogle Scholar

[14]

F. Naud,
Expanding maps on Cantor sets and analytic continuation of zeta functions,
Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), no. 1, 116–153.
CrossrefGoogle Scholar

[15]

H. Oh and D. Winter,
Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of ${\mathrm{SL}}_{2}(\mathbb{Z})$,
J. Amer. Math. Soc. 29 (2016), 1069–1115.
Google Scholar

[16]

W. Parry and M. Pollicott,
Zeta functions and the periodic orbit structure of hyperbolic dynamics,
Astérisque 187–188,
Société Mathématique de France, Paris 1990.
Google Scholar

[17]

D. Ruelle,
An extension of the theory of Fredholm determinants,
Publ. Math. Inst. Hautes Études Sci. 72 (1990), 175–193.
CrossrefGoogle Scholar

[18]

A. Selberg,
On the estimation of Fourier coefficients of modular forms,
Proc. Sympos. Pure Math. 8 (1965), 1–15.
CrossrefGoogle Scholar

[19]

S. K. Zaremba,
La méthode des “bons treillis” pour le calcul des intégrales multiples,
Applications of number theory to numerical analysis (Montreal 1971),
Academic Press, New York (1972), 39–119.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.