[1]

Banica T.,
Théorie des représentations du groupe quantique compact libre $O(n)$,
C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 3, 241–244.
Google Scholar

[2]

Banica T.,
Le groupe quantique compact libre $U(n)$,
Comm. Math. Phys. 190 (1997), no. 1, 143–172.
Google Scholar

[3]

Banica T.,
Symmetries of a generic coaction,
Math. Ann. 314 (1999), no. 4, 763–780.
Google Scholar

[4]

Banica T.,
Quantum groups and Fuss–Catalan algebras,
Comm. Math. Phys. 226 (2002), no. 1, 221–232.
Google Scholar

[5]

Banica T., Bichon J. and Collins B.,
The hyperoctahedral quantum group,
J. Ramanujan Math. Soc. 22 (2007), 345–384.
Google Scholar

[6]

Banica T., Curran S. and Speicher R.,
Classification results for easy quantum groups,
Pacific J. Math. 247 (2010), no. 1, 1–26.
Google Scholar

[7]

Banica T. and Speicher R.,
Liberation of orthogonal Lie groups,
Adv. Math. 222 (2009), no. 4, 1461–1501.
Google Scholar

[8]

Banica T. and Vergnioux R.,
Fusion rules for quantum reflection groups,
J. Noncommut. Geom. 3 (2009), no. 3, 327–359.
Google Scholar

[9]

Bisch D. and Jones V.,
Algebras associated to intermediate subfactors,
Invent. Math. 128 (1997), no. 1, 89–157.
Google Scholar

[10]

Brauer R.,
On algebras which are connected with the semisimple continuous groups,
Ann. of Math. (2) 38 (1937), no. 4, 857–872.
Google Scholar

[11]

Copeland A., Schmidt F. and Simion R.,
On two determinants with interesting factorizations,
Discrete Math. 256 (2002), no. 1, 449–458.
Google Scholar

[12]

Lehrer G. and Zhang R.,
The second fundamental theorem of invariant theory for the orthogonal group,
Ann. of Math. (2) 176 (2012), 2031–2054.
Google Scholar

[13]

Maes A. and Van Daele A.,
Notes on compact quantum groups,
preprint 1998, http://arxiv.org/abs/math/9803122.

[14]

Raum S.,
Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications,
Proc. Amer. Math. Soc 140 (2012), 3207–3218.
Google Scholar

[15]

Raum S. and Weber M.,
A connection between easy quantum groups, varieties of groups and reflection groups,
preprint 2012, http://arxiv.org/abs/1212.4742.

[16]

Raum S. and Weber M.,
Easy quantum groups and quantum subgroups of a semi-direct product quantum group,
preprint 2013, http://arxiv.org/abs/1311.7630.

[17]

Raum S. and Weber M.,
The full classification of orthogonal easy quantum groups,
preprint 2013, http://arxiv.org/abs/1312.3857.

[18]

Takesaki M.,
Theory of operator algebras I,
Encyclopaedia Math. Sci. 124,
Springer-Verlag, Berlin 2002.
Google Scholar

[19]

Tarrago P. and Weber M.,
Unitary easy quantum groups,
in preparation.
Google Scholar

[20]

Tutte W.,
The matrix of chromatic joins,
J. Combin. Theory Ser. B 57 (1993), no. 2, 269–288.
Google Scholar

[21]

Van Daele A. and Wang S.,
Universal quantum groups,
Internat. J. Math. 7 (1996), 255–264.
Google Scholar

[22]

Wang S.,
Free products of compact quantum groups,
Comm. Math. Phys. 167 (1995), no. 3, 671–692.
Google Scholar

[23]

Wang S.,
Quantum symmetry groups of finite spaces,
Comm. Math. Phys. 195 (1998), no. 1, 195–211.
CrossrefGoogle Scholar

[24]

Weber M.,
On the classification of easy quantum groups – The nonhyperoctahedral and the half-liberated case,
Adv. Math. 245 (2013), no. 1, 500–533.
Google Scholar

[25]

Woronowicz S.,
Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups,
Invent. Math. 93 (1988), no. 1, 35–76.
Google Scholar

[26]

Woronowicz S.,
Compact quantum groups,
Quantum symmetries/Symétries quantiques (Les Houches 1995),
North-Holland, Amsterdam (1998), 845–884.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.