## Abstract

We establish an unexpected relation among the Weil-Petersson metric, the generalized Hodge metrics and the BCOV torsion. Using this relation, we prove that certain kind of moduli spaces of polarized Calabi-Yau manifolds do not admit complete subvarieties. That is, there is no complete smooth family for certain class of polarized Calabi-Yau manifolds. We also give an estimate of the complex Hessian of the BCOV torsion using the relation. After establishing a degenerate version of the Schwarz Lemma of Yau, we prove that the complex Hessian of the BCOV torsion is bounded by the Poincaré metric.

## Comments (0)