Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie

IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

See all formats and pricing
More options …
Volume 2006, Issue 596


The μ-invariant of anticyclotomic L-functions of imaginary quadratic fields

Tobias Finis
  • Leipzig; Universität Leipzig, Mathematisches Institut, Fakultät für Mathematik und Informatik, Augustusplatz 10/11, 04109 Leipzig.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-08-16 | DOI: https://doi.org/10.1515/CRELLE.2006.056


This paper considers the one-variable p-adic L-function which interpolates the L-values of anticyclotomic Hecke characters of an imaginary quadratic field K in which p splits. Fixing such a character with root number +1, the Iwasawa μ-invariant of the associated branch of the p-adic L-function is computed as a sum of simple local contributions at the inert primes of K. The proof uses a result of Tonghai Yang to relate the p-adic L-function to a measure constructed out of the special values of theta functions with complex multiplication by K.

About the article

Received: 2005-04-25

Published Online: 2006-08-16

Published in Print: 2006-07-01

Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2006, Issue 596, Pages 131–152, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/CRELLE.2006.056.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Haruzo Hida
Inventiones mathematicae, 2013, Volume 194, Number 1, Page 1
Robert Pollack and Tom Weston
Compositio Mathematica, 2011, Volume 147, Number 05, Page 1353
Haruzo Hida
Annals of Mathematics, 2010, Volume 172, Number 1, Page 41

Comments (0)

Please log in or register to comment.
Log in