Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

Print
ISSN
0075-4102
See all formats and pricing
More options …
Volume 2010, Issue 638

Issues

Surgery formula for Seiberg–Witten invariants of negative definite plumbed 3-manifolds

Gábor Braun / András Némethi
Published Online: 2009-11-23 | DOI: https://doi.org/10.1515/crelle.2010.007

Abstract

We derive a cut-and-paste surgery formula of Seiberg–Witten invariants for negative definite plumbed rational homology 3-spheres. It is similar to (and motivated by) Okuma's recursion formula [Trans. Amer. Math. Soc.], 4.5, targeting analytic invariants of splice-quotient singularities. Combining the two formulas automatically provides a proof of the equivariant version [Némethi, Line bundles associated with normal surface singularities, World Sci. Publ., 2007], 5.2(b), of the Seiberg–Witten invariant conjecture [Némethi and Nicolaescu, Geom. Topol. 6: 269–328, 2002] for these singularities.

About the article

Received: 2007-11-20

Revised: 2008-08-28

Published Online: 2009-11-23

Published in Print: 2010-01-01


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010, Issue 638, Pages 189–208, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle.2010.007.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tamás László and András Némethi
Geometry & Topology, 2014, Volume 18, Number 2, Page 717

Comments (0)

Please log in or register to comment.
Log in