Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2012, Issue 662

Issues

Unitary invariants for Hilbert modules of finite rank

Shibananda Biswas / Gadadhar Misra / Mihai Putinar

Abstract

We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.

About the article

Received: 2010-06-07

Revised: 2010-09-10

Published in Print: 2012-01-01


Citation Information: Journal fr die reine und angewandte Mathematik (Crelles Journal), Volume 2012, Issue 662, Pages 165–204, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/CRELLE.2011.091.

Export Citation

Comments (0)

Please log in or register to comment.
Log in