Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie

IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2018: 1.55

See all formats and pricing
More options …
Volume 2013, Issue 678


Einstein manifolds and extremal Kähler metrics

Claude LeBrun
Published Online: 2012-02-22 | DOI: https://doi.org/10.1515/crelle.2012.006


In joint work with Chen and Weber, the author has elsewhere shown that ℂℙ2⋕2ℂℙ2 admits an Einstein metric. The present paper gives a new and rather different proof of this fact. Our results include new existence theorems for extremal Kähler metrics, and these allow one to prove the above existence statement by deforming the Kähler–Einstein metric on ℂℙ2⋕3ℂℙ2 until bubbling-off occurs.

About the article

Received: 2010-09-16

Revised: 2011-06-28

Published Online: 2012-02-22

Published in Print: 2013-05-01

Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2013, Issue 678, Pages 69–94, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle.2012.006.

Export Citation

©[2013] by Walter de Gruyter Berlin Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in