[1]

J. W. Anderson, J. Aramayona and K. J. Shackleton,
An obstruction to the strong relative hyperbolicity of a group,
J. Group Theory 10 (2007), no. 6, 749–756.
Web of ScienceGoogle Scholar

[2]

J. Aramayona and J. Souto,
Automorphisms of the graph of free splittings,
Michigan Math. J. 60 (2011), no. 3, 483–493.
CrossrefWeb of ScienceGoogle Scholar

[3]

J. Behrstock, C. Druţu and L. Mosher,
Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity,
Math. Ann. 344 (2009), no. 3, 543–595.
Web of ScienceCrossrefGoogle Scholar

[4]

M. Bestvina and M. Feighn,
A $\mathrm{Out}({F}_{n})$-hyperbolic complex,
Groups Geom. Dyn. 4 (2010), no. 1, 31–58.
Google Scholar

[5]

M. Bestvina and M. Feighn,
Hyperbolicity of the complex of free factors,
Adv. Math. 256 (2014), 104–155.
Web of ScienceCrossrefGoogle Scholar

[6]

M. Bestvina and M. Feighn,
Subfactor projections,
J. Topol. 7 (2014), no. 3, 771–804.
CrossrefGoogle Scholar

[7]

M. Culler and K. Vogtmann,
Moduli of graphs and automorphisms of free groups,
Invent. Math. 84 (1986), no. 1, 91–119.
CrossrefGoogle Scholar

[8]

S. Gadgil and S. Pandit,
Algebraic and geometric intersection numbers for free groups,
Topology Appl. 156 (2009), no. 9, 1615–1619.
Web of ScienceCrossrefGoogle Scholar

[9]

U. Hamenstädt and S. Hensel,
Spheres and projections for $\mathrm{Out}({F}_{n})$,
J. Topol. (2014), 10.1112/jtopol/jtu015.
Google Scholar

[10]

M. Handel and L. Mosher,
The free splitting complex of a free group I: Hyperbolicity,
Geom. Topol. 17 (2013), no. 3, 1581–1672.
CrossrefWeb of ScienceGoogle Scholar

[11]

M. Handel and L. Mosher,
Relative free splitting and free factor complexes I: Hyperbolicity,
preprint (2014), http://arxiv.org/abs/1407.3508.

[12]

J. L. Harer,
Stability of the homology of the mapping class groups of orientable surfaces,
Ann. of Math. (2) 121 (1985), no. 2, 215–249.
CrossrefGoogle Scholar

[13]

A. Hatcher,
Homological stability for automorphism groups of free groups,
Comment. Math. Helv. 70 (1995), no. 1, 39–62.
CrossrefGoogle Scholar

[14]

A. Hatcher and K. Vogtmann,
Isoperimetric inequalities for automorphism groups of free groups,
Pacific J. Math. 173 (1996), no. 2, 425–441.
CrossrefGoogle Scholar

[15]

A. Hatcher and K. Vogtmann,
The complex of free factors of a free group,
Q. J. Math. Oxford (2) 49 (1998), no. 2, 459–468.
CrossrefGoogle Scholar

[16]

S. Hensel, D. Osajda, and P. Przytycki,
Realisation and dismantlability,
Geom. Topol. 18 (2014), no. 4, 2079–2126.
CrossrefWeb of ScienceGoogle Scholar

[17]

C. Horbez,
Sphere paths in outer space,
Algebr. Geom. Topol. 12 (2012), 2493–2517.
Web of ScienceGoogle Scholar

[18]

C. Horbez,
Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings,
preprint (2014), http://arxiv.org/abs/1408.0544.
Web of Science

[19]

I. Kapovich and K. Rafi,
On hyperbolicity of free splitting and free factor complexes,
Groups Geom. Dyn. 8 (2014), no. 2, 391–414.
Web of ScienceCrossrefGoogle Scholar

[20]

F. Laudenbach,
Sur les 2-sphères d’une variété de dimension 3,
Ann. of Math. (2) 97 (1973), 57–81.
CrossrefGoogle Scholar

[21]

B. Mann,
Hyperbolicity of the cyclic splitting graph,
Geom. Dedicata 173 (2014), 271–280.
CrossrefGoogle Scholar

[22]

H. A. Masur and Y. N. Minsky,
Geometry of the complex of curves I: Hyperbolicity,
Invent. Math. 138 (1999), no. 1, 103–149.
CrossrefGoogle Scholar

[23]

H. A. Masur and S. Schleimer,
The geometry of the disk complex,
J. Amer. Math. Soc. 26 (2013), no. 1, 1–62.
Google Scholar

[24]

J. R. Stallings,
Topology of finite graphs,
Invent. Math. 71 (1983), no. 3, 551–565.
CrossrefGoogle Scholar

[25]

K. Vogtmann,
Automorphisms of free groups and outer space,
Geom. Dedicata 94 (2002), 1–31.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.