Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2017, Issue 730

Issues

The hyperbolicity of the sphere complex via surgery paths

Arnaud Hilion
  • Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, Technopôle Château-Gombert, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Camille Horbez
Published Online: 2015-03-10 | DOI: https://doi.org/10.1515/crelle-2014-0128

Abstract

In [10], Handel and Mosher have proved that the free splitting complex 𝒮n for the free group Fn is Gromov hyperbolic. This is a deep and much sought-after result, since it establishes 𝒮n as a good analogue of the curve complex for surfaces.

We give a shorter alternative proof of this theorem, using surgery paths in Hatcher’s sphere complex (another model for the free splitting complex), instead of Handel and Mosher’s fold paths. As a byproduct, we get that surgery paths are unparameterized quasi-geodesics in the sphere complex.

We explain how to deduce from our proof the hyperbolicity of the free factor complex and the arc complex of a surface with boundary.

References

  • [1]

    J. W. Anderson, J. Aramayona and K. J. Shackleton, An obstruction to the strong relative hyperbolicity of a group, J. Group Theory 10 (2007), no. 6, 749–756. Web of ScienceGoogle Scholar

  • [2]

    J. Aramayona and J. Souto, Automorphisms of the graph of free splittings, Michigan Math. J. 60 (2011), no. 3, 483–493. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    J. Behrstock, C. Druţu and L. Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009), no. 3, 543–595. Web of ScienceCrossrefGoogle Scholar

  • [4]

    M. Bestvina and M. Feighn, A Out(Fn)-hyperbolic complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58. Google Scholar

  • [5]

    M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104–155. Web of ScienceCrossrefGoogle Scholar

  • [6]

    M. Bestvina and M. Feighn, Subfactor projections, J. Topol. 7 (2014), no. 3, 771–804. CrossrefGoogle Scholar

  • [7]

    M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. CrossrefGoogle Scholar

  • [8]

    S. Gadgil and S. Pandit, Algebraic and geometric intersection numbers for free groups, Topology Appl. 156 (2009), no. 9, 1615–1619. Web of ScienceCrossrefGoogle Scholar

  • [9]

    U. Hamenstädt and S. Hensel, Spheres and projections for Out(Fn), J. Topol. (2014), 10.1112/jtopol/jtu015. Google Scholar

  • [10]

    M. Handel and L. Mosher, The free splitting complex of a free group I: Hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. CrossrefWeb of ScienceGoogle Scholar

  • [11]

    M. Handel and L. Mosher, Relative free splitting and free factor complexes I: Hyperbolicity, preprint (2014), http://arxiv.org/abs/1407.3508.

  • [12]

    J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. CrossrefGoogle Scholar

  • [13]

    A. Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. CrossrefGoogle Scholar

  • [14]

    A. Hatcher and K. Vogtmann, Isoperimetric inequalities for automorphism groups of free groups, Pacific J. Math. 173 (1996), no. 2, 425–441. CrossrefGoogle Scholar

  • [15]

    A. Hatcher and K. Vogtmann, The complex of free factors of a free group, Q. J. Math. Oxford (2) 49 (1998), no. 2, 459–468. CrossrefGoogle Scholar

  • [16]

    S. Hensel, D. Osajda, and P. Przytycki, Realisation and dismantlability, Geom. Topol. 18 (2014), no. 4, 2079–2126. CrossrefWeb of ScienceGoogle Scholar

  • [17]

    C. Horbez, Sphere paths in outer space, Algebr. Geom. Topol. 12 (2012), 2493–2517. Web of ScienceGoogle Scholar

  • [18]

    C. Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, preprint (2014), http://arxiv.org/abs/1408.0544. Web of Science

  • [19]

    I. Kapovich and K. Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014), no. 2, 391–414. Web of ScienceCrossrefGoogle Scholar

  • [20]

    F. Laudenbach, Sur les 2-sphères d’une variété de dimension 3, Ann. of Math. (2) 97 (1973), 57–81. CrossrefGoogle Scholar

  • [21]

    B. Mann, Hyperbolicity of the cyclic splitting graph, Geom. Dedicata 173 (2014), 271–280. CrossrefGoogle Scholar

  • [22]

    H. A. Masur and Y. N. Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. CrossrefGoogle Scholar

  • [23]

    H. A. Masur and S. Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013), no. 1, 1–62. Google Scholar

  • [24]

    J. R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551–565. CrossrefGoogle Scholar

  • [25]

    K. Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata 94 (2002), 1–31. CrossrefGoogle Scholar

About the article

Received: 2012-12-19

Revised: 2014-11-03

Published Online: 2015-03-10

Published in Print: 2017-09-01


Funding Source: Agence Nationale de la Recherche

Award identifier / Grant number: ANR-10-JCJC 01010

First author supported by the grant ANR-10-JCJC 01010 of the Agence Nationale de la Recherche.


Citation Information: Journal für die reine und angewandte Mathematik, Volume 2017, Issue 730, Pages 135–161, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0128.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Matt Clay, Yulan Qing, and Kasra Rafi
Algebraic & Geometric Topology, 2017, Volume 17, Number 6, Page 3751
[2]

Comments (0)

Please log in or register to comment.
Log in