Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2018: 1.859

CiteScore 2018: 1.14

SCImago Journal Rank (SJR) 2018: 2.554
Source Normalized Impact per Paper (SNIP) 2018: 1.411

Mathematical Citation Quotient (MCQ) 2017: 1.49

Online
ISSN
1435-5345
See all formats and pricing
More options …
Volume 2017, Issue 733

Issues

Equidistribution in supersingular Hecke orbits

Arno Kret
Published Online: 2015-04-12 | DOI: https://doi.org/10.1515/crelle-2014-0157

Abstract

We prove that Hecke operators act with equidistribution on the basic stratum of certain Shimura varieties. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain cuspidal automorphic representations on GLn for which this conjecture is known, and therefore we obtain optimal estimates on the rate of convergence.

References

  • [1]

    J. Arthur, The invariant trace formula. II: Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501–554. CrossrefGoogle Scholar

  • [2]

    J. Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, American Mathematical Society, Providence (2005), 1–263. Google Scholar

  • [3]

    A. I. Badulescu, Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), no. 2, 383–438. CrossrefWeb of ScienceGoogle Scholar

  • [4]

    J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), Lie group representations II (College Park 1982/1983), Lecture Notes in Math. 1041, Springer, Berlin (1984), 50–102. Google Scholar

  • [5]

    A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J. 161 (2012), no. 12, 2311–2413. Web of ScienceCrossrefGoogle Scholar

  • [6]

    L. Clozel, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), no. 1, 255–302. CrossrefGoogle Scholar

  • [7]

    L. Clozel, Purity reigns supreme, Int. Math. Res. Not. IMRN 2013 (2013), no. 2, 328–346. CrossrefGoogle Scholar

  • [8]

    L. Clozel and P. Delorme, Pseudo-coefficients et cohomologie des groupes de Lie réductifs réels, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 12, 385–387. Google Scholar

  • [9]

    L. Clozel, H. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent. Math. 144 (2001), no. 2, 327–351. CrossrefGoogle Scholar

  • [10]

    L. Clozel and E. Ullmo, Équidistribution des points de Hecke, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins University Press, Baltimore (2004), 193–254. Google Scholar

  • [11]

    P. Deligne, Travaux de Shimura, Séminaire Bourbaki 1970/71, Lecture Notes in Math. 244, Springer, Berlin (1971), 123–165. Google Scholar

  • [12]

    P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis 1977), Proc. Sympos. Pure Math. 33 Part 2, American Mathematical Society, Providence (1979), 247–289. Google Scholar

  • [13]

    F. Diamond and J. Shurman, A first course in modular forms, Grad. Texts in Math. 228, Springer, New York 2005. Google Scholar

  • [14]

    M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Ann. of Math. Stud. 151, Princeton University Press, Princeton 2001. Google Scholar

  • [15]

    N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Ann. of Math. Stud. 108, Princeton University Press, Princeton 1985. Google Scholar

  • [16]

    R. E. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), no. 3, 287–300. CrossrefGoogle Scholar

  • [17]

    R. E. Kottwitz, Stable trace formula: Cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. CrossrefGoogle Scholar

  • [18]

    R. E. Kottwitz, Isocrystals with additional structure, Compos. Math. 56 (1985), no. 2, 201–220. Google Scholar

  • [19]

    R. E. Kottwitz, Shimura varieties and λ-adic representations, Automorphic forms, Shimura varieties, and L-functions. Vol. I (Ann Arbor 1988), Perspect. Math. 10, Academic Press, Boston (1990), 161–209. Google Scholar

  • [20]

    R. E. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), no. 3, 653–665. CrossrefGoogle Scholar

  • [21]

    R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. CrossrefGoogle Scholar

  • [22]

    R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque 255, Société Mathématique de France, Paris, 1999. Google Scholar

  • [23]

    A. Kret, Combinatorics of the basic stratum, preprint (2012), http://arxiv.org/abs/1211.3323.

  • [24]

    A. Kret, The trace formula and the existence of PEL type Abelian varieties modulo p, preprint (2012), http://arxiv.org/abs/1209.0264.

  • [25]

    A. Kret, The basic stratum of some simple Shimura varieties, Math. Ann. 356 (2013), no. 2, 487–518. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257, Société Mathématique de France, Paris 1999. Google Scholar

  • [27]

    R. P. Langlands, Les débuts d’une formule des traces stable, Publ. Math. Univ. Paris VII 13, Université de Paris VII U.E.R. de Mathématiques, Paris 1983. Google Scholar

  • [28]

    R. Menares, Equidistribution of Hecke points on the supersingular module, Proc. Amer. Math. Soc. 140 (2012), no. 8, 2687–2691. CrossrefGoogle Scholar

  • [29]

    C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), no. 4, 605–674. Google Scholar

  • [30]

    S. Morel, On the cohomology of certain noncompact Shimura varieties, Ann. of Math. Stud. 173, Princeton University Press, Princeton 2010. Google Scholar

  • [31]

    M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Automorphic forms (I). Proceedings of the semester of the Émile Borel Center (Paris 2000), Astérisque 298, Société Mathématique de France, Paris (2005), 271–318. Google Scholar

  • [32]

    S. W. Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), no. 3, 1645–1741. CrossrefWeb of ScienceGoogle Scholar

  • [33]

    S. W. Shin, Appendix. On the cohomological base change for unitary similitude groups, Compos. Math. 150 (2014), no. 2, 191–228. Google Scholar

  • [34]

    E. Viehmann and T. Wedhorn, Ekedahl–Oort and Newton strata for Shimura varieties of PEL type, Math. Ann. 356 (2013), no. 4, 1493–1550. CrossrefWeb of ScienceGoogle Scholar

  • [35]

    M.-F. Vigneras, On the global correspondence between GL(n) and division algebras, Lecture notes from IAS (1984). Google Scholar

About the article

Received: 2013-03-12

Revised: 2014-11-15

Published Online: 2015-04-12

Published in Print: 2017-12-01


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017, Issue 733, Pages 25–54, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2014-0157.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in