[1]

J. Arthur,
The invariant trace formula. II: Global theory,
J. Amer. Math. Soc. 1 (1988), no. 3, 501–554.
CrossrefGoogle Scholar

[2]

J. Arthur,
An introduction to the trace formula,
Harmonic analysis, the trace formula, and Shimura varieties,
Clay Math. Proc. 4,
American Mathematical Society, Providence (2005), 1–263.
Google Scholar

[3]

A. I. Badulescu,
Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations,
Invent. Math. 172 (2008), no. 2, 383–438.
CrossrefWeb of ScienceGoogle Scholar

[4]

J. N. Bernstein,
*P*-invariant distributions on $\mathrm{GL}(N)$ and the classification of unitary representations of $\mathrm{GL}(N)$ (non-Archimedean case),
Lie group representations II (College Park 1982/1983),
Lecture Notes in Math. 1041,
Springer, Berlin (1984), 50–102.
Google Scholar

[5]

A. Caraiani,
Local-global compatibility and the action of monodromy on nearby cycles,
Duke Math. J. 161 (2012), no. 12, 2311–2413.
Web of ScienceCrossrefGoogle Scholar

[6]

L. Clozel,
The fundamental lemma for stable base change,
Duke Math. J. 61 (1990), no. 1, 255–302.
CrossrefGoogle Scholar

[7]

L. Clozel,
Purity reigns supreme,
Int. Math. Res. Not. IMRN 2013 (2013), no. 2, 328–346.
CrossrefGoogle Scholar

[8]

L. Clozel and P. Delorme,
Pseudo-coefficients et cohomologie des groupes de Lie réductifs réels,
C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 12, 385–387.
Google Scholar

[9]

L. Clozel, H. Oh and E. Ullmo,
Hecke operators and equidistribution of Hecke points,
Invent. Math. 144 (2001), no. 2, 327–351.
CrossrefGoogle Scholar

[10]

L. Clozel and E. Ullmo,
Équidistribution des points de Hecke,
Contributions to automorphic forms, geometry, and number theory,
Johns Hopkins University Press, Baltimore (2004), 193–254.
Google Scholar

[11]

P. Deligne,
Travaux de Shimura,
Séminaire Bourbaki 1970/71,
Lecture Notes in Math. 244,
Springer, Berlin (1971), 123–165.
Google Scholar

[12]

P. Deligne,
Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques,
Automorphic forms, representations and *L*-functions (Corvallis 1977),
Proc. Sympos. Pure Math. 33 Part 2,
American Mathematical Society, Providence (1979), 247–289.
Google Scholar

[13]

F. Diamond and J. Shurman,
A first course in modular forms,
Grad. Texts in Math. 228,
Springer, New York 2005.
Google Scholar

[14]

M. Harris and R. Taylor,
The geometry and cohomology of some simple Shimura varieties,
Ann. of Math. Stud. 151,
Princeton University Press, Princeton 2001.
Google Scholar

[15]

N. M. Katz and B. Mazur,
Arithmetic moduli of elliptic curves,
Ann. of Math. Stud. 108,
Princeton University Press, Princeton 1985.
Google Scholar

[16]

R. E. Kottwitz,
Shimura varieties and twisted orbital integrals,
Math. Ann. 269 (1984), no. 3, 287–300.
CrossrefGoogle Scholar

[17]

R. E. Kottwitz,
Stable trace formula: Cuspidal tempered terms,
Duke Math. J. 51 (1984), no. 3, 611–650.
CrossrefGoogle Scholar

[18]

R. E. Kottwitz,
Isocrystals with additional structure,
Compos. Math. 56 (1985), no. 2, 201–220.
Google Scholar

[19]

R. E. Kottwitz,
Shimura varieties and λ-adic representations,
Automorphic forms, Shimura varieties, and *L*-functions. Vol. I (Ann Arbor 1988),
Perspect. Math. 10,
Academic Press, Boston (1990), 161–209.
Google Scholar

[20]

R. E. Kottwitz,
On the λ-adic representations associated to some simple Shimura varieties,
Invent. Math. 108 (1992), no. 3, 653–665.
CrossrefGoogle Scholar

[21]

R. E. Kottwitz,
Points on some Shimura varieties over finite fields,
J. Amer. Math. Soc. 5 (1992), no. 2, 373–444.
CrossrefGoogle Scholar

[22]

R. E. Kottwitz and D. Shelstad,
Foundations of twisted endoscopy,
Astérisque 255,
Société Mathématique de France, Paris, 1999.
Google Scholar

[23]

A. Kret,
Combinatorics of the basic stratum,
preprint (2012), http://arxiv.org/abs/1211.3323.

[24]

A. Kret,
The trace formula and the existence of PEL type Abelian varieties modulo *p*,
preprint (2012), http://arxiv.org/abs/1209.0264.

[25]

A. Kret,
The basic stratum of some simple Shimura varieties,
Math. Ann. 356 (2013), no. 2, 487–518.
CrossrefWeb of ScienceGoogle Scholar

[26]

J.-P. Labesse,
Cohomologie, stabilisation et changement de base,
Astérisque 257,
Société Mathématique de France, Paris 1999.
Google Scholar

[27]

R. P. Langlands,
Les débuts d’une formule des traces stable,
Publ. Math. Univ. Paris VII 13,
Université de Paris VII U.E.R. de Mathématiques, Paris 1983.
Google Scholar

[28]

R. Menares,
Equidistribution of Hecke points on the supersingular module,
Proc. Amer. Math. Soc. 140 (2012), no. 8, 2687–2691.
CrossrefGoogle Scholar

[29]

C. Mœglin and J.-L. Waldspurger,
Le spectre résiduel de $\mathrm{GL}(n)$,
Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), no. 4, 605–674.
Google Scholar

[30]

S. Morel,
On the cohomology of certain noncompact Shimura varieties,
Ann. of Math. Stud. 173,
Princeton University Press, Princeton 2010.
Google Scholar

[31]

M. Rapoport,
A guide to the reduction modulo *p* of Shimura varieties,
Automorphic forms (I). Proceedings of the semester of the Émile Borel Center (Paris 2000),
Astérisque 298,
Société Mathématique de France, Paris (2005), 271–318.
Google Scholar

[32]

S. W. Shin,
Galois representations arising from some compact Shimura varieties,
Ann. of Math. (2) 173 (2011), no. 3, 1645–1741.
CrossrefWeb of ScienceGoogle Scholar

[33]

S. W. Shin,
Appendix. On the cohomological base change for unitary similitude groups,
Compos. Math. 150 (2014), no. 2, 191–228.
Google Scholar

[34]

E. Viehmann and T. Wedhorn,
Ekedahl–Oort and Newton strata for Shimura varieties of PEL type,
Math. Ann. 356 (2013), no. 4, 1493–1550.
CrossrefWeb of ScienceGoogle Scholar

[35]

M.-F. Vigneras,
On the global correspondence between $\mathrm{GL}(n)$ and division algebras,
Lecture notes from IAS (1984).
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.