Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Huybrechts, Daniel / Hwang, Jun-Muk / Williamson, Geordie


IMPACT FACTOR 2017: 1.686

CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 2.585
Source Normalized Impact per Paper (SNIP) 2017: 1.203

Mathematical Citation Quotient (MCQ) 2016: 1.28

Online
ISSN
1435-5345
See all formats and pricing
More options …
Ahead of print

Issues

Spectral gap characterization of full type III factors

Amine Marrakchi
  • École Normale Supérieure, 45 rue d’Ulm 75230 Paris Cedex 05, France; and Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-12 | DOI: https://doi.org/10.1515/crelle-2016-0071

Abstract

We give a spectral gap characterization of fullness for type III factors which is the analog of a theorem of Connes in the tracial case. Using this criterion, we generalize a theorem of Jones by proving that if M is a full factor and σ:GAut(M) is an outer action of a discrete group G whose image in Out(M) is discrete, then the crossed product von Neumann algebra MσG is also a full factor. We apply this result to prove the following conjecture of Tomatsu–Ueda: the continuous core of a type III1 factor M is full if and only if M is full and its τ invariant is the usual topology on .

References

  • [1]

    Ando H. and Haagerup U., Ultraproducts of von Neumann algebras, J. Funct. Anal. 266 (2014), no. 12, 6842–6913. Google Scholar

  • [2]

    Connes A., Almost periodic states and factors of type III1, J. Funct. Anal. 16 (1974), no. 4, 415–445. Google Scholar

  • [3]

    Connes A., Classification of injective factors cases II1, II, IIIλ, λ1, Ann. of Math. (2) 104 (1976), 73–115. Google Scholar

  • [4]

    Connes A., Factors of type III1, property Lλ and closure of inner automorphisms, J. Operator Theory 14 (1985), 189–211. Google Scholar

  • [5]

    Connes A. and Størmer E., Homogeneity of the state space of factors of type III1, J. Funct. Anal. 28 (1978), no. 2, 187–196. CrossrefGoogle Scholar

  • [6]

    Dixmier J. and Maréchal O., Vecteurs totalisateurs d’une algèbre de von Neumann, Comm. Math. Phys. 22 (1971), no. 1, 44–50. Google Scholar

  • [7]

    Haagerup U., Lp-spaces associated with an arbitrary von Neumann algebra, Algebres d’opérateurs et leurs applications en physique mathématique (Marseille 1977), Coll. Int. Centre Nat. Rech. Sci. 274, Editions du Centre National de la Recherche Scientifique, Paris (1979), 175–184. Google Scholar

  • [8]

    Haagerup U., Operator valued weights in von Neumann algebras. I, J. Funct. Anal. 32 (1979), no. 2, 175–206. CrossrefGoogle Scholar

  • [9]

    Jones V. F., Central sequences in crossed products of full factors, Duke Math. J 49 (1982), no. 1, 29–33. Google Scholar

  • [10]

    Kosaki H., Applications of uniform convexity of noncommutative Lp-spaces, Trans. Amer. Math. Soc. 283 (1984), no. 1, 265–282. Google Scholar

  • [11]

    Popa S., On the classification of inductive limits of II1 factors with spectral gap, Trans. Amer. Math. Soc. 364 (2012), no. 6, 2987–3000. Google Scholar

  • [12]

    Raynaud Y., On ultrapowers of non-commutative Lp-spaces, J. Operator Theory 48 (2002), no. 1, 41–68. Google Scholar

  • [13]

    Shlyakhtenko D., On the classification of full factors of type III, Trans. Amer. Math. Soc. 356 (2004), no. 10, 4143–4159. Google Scholar

  • [14]

    Takesaki M., Operator algebras II, Springer, New York 2001. Google Scholar

  • [15]

    Tomatsu R. and Ueda Y., A characterization of fullness of continuous cores of type III1 free product factors, Kyoto J. Math 56 (2014), no. 3, 599–610. Google Scholar

About the article

Received: 2016-06-08

Revised: 2016-11-08

Published Online: 2017-01-12


Funding Source: H2020 European Research Council

Award identifier / Grant number: GAN 637601

The research is supported by ERC Starting Grant GAN 637601.


Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal), ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2016-0071.

Export Citation

© 2017 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in