Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Steam reforming of methane over Ni-substituted Sr hexaaluminates

Marina Bukhtiyarova
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk State University, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Ivanova
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Slavinskaya
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Kuznetsov
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lyudmila Plyasova
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga Stonkus
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Rogov
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vasilii Kaichev
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandr Noskov
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-09 | DOI: https://doi.org/10.2478/cse-2012-0002

Abstract

Ni-substituted Sr-aluminates Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0; 0.2; 0.4; 0.8) obtained by a precipitation method and calcined at 1200°C have been characterized by different physicochemical techniques and their catalytic properties have been tested in steam reformation of methane. It has been shown that substitution of Al3+ and/or Sr2+ by Ni2+ in the aluminate structure results in changes of phase composition, specific surface area, and reducibility of samples. It has been established that the samples are not completely reduced in the temperature range of 30-900°C. The Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0; 0.2; 0.4) catalysts are active and stable in the steam reforming of methane at 700oC: residual amount of methane is (1.1±1.0) vol.%, while the Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0.8) sample is rapidly deactivated by coking.

Keywords: Ni-substituted aluminates; Steam reforming; Methane; Catalyst

  • Salhi N., Boulahouache A., Petit C., Kiennemann A., Rabia C., Steam reforming of methane to syngas over NiAl2O4 spinel catalysts, Intern. J. Hydrogen Energy, 2011; 36, 11433 - 11439.Google Scholar

  • Kim H.-W., Kang K.-M., Kwak H.-Y., Kim J. H., Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 2011; 168, 775-783.Google Scholar

  • Urasaki K., Sekine Y., Kawabe S., Kikuchi E., Matsukata M., Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane, Appl. Catal. A, 2005; 286, 23-29.Google Scholar

  • Rostrup-Nielsen J. R., Bak-Hansen J. H., CO2-Reforming of Methane over Transition Metals, J. Catal., 1993; 144, 38 - 49.Google Scholar

  • Xu Z., Zhen M., Bi Y., Zhen K., Carbon dioxide reforming of methane to synthesis gas over hexaaluminate ANiAl11O19-d (A = Ca, Sr, Ba and La) catalysts, Catal. Lett., 2000; 64, 157-161.Google Scholar

  • Christensen K. O., Chen D., Lødeng R., Holmen A., Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Appl. Catal. A, 2006; 314, 9-22.Google Scholar

  • Gardner T. H., Shekhawat D., Berry D. A., Smith M. W., Salazar M., Kugler E. L., Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation, Appl. Catal. A, 2007; 323, 1-8.Web of ScienceGoogle Scholar

  • Groppi G., Cristiani C., Forzatti P., BaFexAl12-xO19 system for high-temperature catalytic combustion, J. Catal., 1997; 168, 95-103.Google Scholar

  • Takehira K., Highly dispersed and stable supported metal catalysts prepared by solid phase crystallization method, Catal. Surveys Japan, 2002; 6, 19-32.Google Scholar

  • Reforming catalysts for ammonia production. Review of foreign literature, State institute of nitric industry, Moscow, 1989.Google Scholar

  • Groppi G., Cristiani C., Forzatti P., Preparation, characterisation and catalytic activity of pure and substituted La-hexaaluminate systems for high temperature catalytic combustion, Appl. Catal. B, 2001; 35, 137-148.Google Scholar

  • Lietti L., Cristiani C., Groppi G., Forzatti P., Preparation, characterization and reactivity of Me-hexaaluminate (Me = Mn, Co, Fe, Ni, Cr) catalysts in the catalytic combustion of NH3-containing gasified biomasses, Catal. Today, 2000; 59, 191-204.Google Scholar

  • Ivanova A. S., Zolotarsky I. A., Bobrova I. I., Smirnov E. I., Kuzmin V. A., Noskov A. S., Parmon V. N., Catalyst and preparation method of syngas of steam reforming of hydrocarbons, RF Patent Nº 2185239, Byull. Izobret., Nº 20 (2002).Google Scholar

  • Price W. J., Analytical atomic-absorption spectroscopy, New York, 1976.Google Scholar

  • Lowell S., Shields J. E., Thomas M. A., Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Netherlands, 2006.Google Scholar

  • Scofield J. H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976; 8, 129-137.Google Scholar

  • Shirley D. A., High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972; 5, 4709-4714.Google Scholar

  • Wang J., Tian Zh., Xu J., Xu Yu., Xu Zh., Lin L., Preparation of Mn substituted La-hexaaluminate catalysts by using supercritical drying, Catal. Today, 2003; 83, 213-222.Google Scholar

  • Bukhtiyarova M. V., Ivanova A. S., Plyasova L. M., Litvak G. S., Budneva A. A., Paukshtis E. A., Structure and acid-base properties of hexaaluminates, React. Kinet. Catal. Lett., 2008; 93, 375 - 387.Web of ScienceGoogle Scholar

  • Scheffer B., Molhoek P., Moulijn J. A., Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulfurization catalysts, Appl. Catal., 1989; 46, 11-30.Google Scholar

  • Chu W., Yang W., Lin L., The partial oxidation of methane to syngas over the nickel-modified hexaaluminate catalysts BaNiyAl12-yO19-δ, Appl. Catal. A, 2002; 235, 39-45Google Scholar

  • Roh H.-S., Jun K.-W., Dong W.-S., Baek S.-C., Park S.-E., Methane reforming reactions over stable Ni/q-Al2O3 catalysts, Journal Ind. Eng. Chem., 2002; 8, 464 - 471.Google Scholar

  • Kosova N., Devyatkina E., Slobodyuk A., Kaichev V., Surface chemistry study of LiCoO2 coated with alumina, Solid State Ionics, 2008; 179, 1745-1749Google Scholar

  • Bukhtiyarova M. V., Ivanova A. S., Plyasova L. M., Litvak G. S., Rogov V. A., Kaichev V. V., Slavinskaya E. M., Kuznetsov P. A., Polukhina I. A., Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates, Appl. Catal. A, 2009; 357, 193-205.Google Scholar

  • Sosulnikov M. I., Teterin Yu.A., X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates, J. Electron Spectrosc. Relat. Phenom., 1992; 59, 111 - 126.Google Scholar

  • Dupin J.-C., Gonbeau D., Vinatier P., Levasseur A., Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2000; 2, 1319 - 1324.Google Scholar

  • Van der Heide P. A. W., Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA, IVA elemental surfaces, J. Electron Spectrosc. Relat. Phenom., 2006; 151, 79-91.Google Scholar

  • Van Veenendaal M. A., Sawatzky G. A., Nonlocal screning effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Phys. Rev. Lett., 1993; 70, 2459-2462.Google Scholar

  • McIntyre N. S., Cook M. G., X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Anal. Chem., 1975; 47, 2208-2213.Google Scholar

  • Occelli M. L., Psaras D., Suib S. L., Stencel J. M., Metal contaminant effects on the properties of a silica-rich fluid cracking catalyst, Appl. Catal., 1986; 28, 143-160.Google Scholar

  • Carley A. F., Jackson S. D., O'Shea J. N., Roberts M. W., The formation and characterization of Ni3+ - an x-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O, Surf. Sci., 1999; 440, L868-L874.Google Scholar

  • Chu Y., Li S., Lin J., Gu J., Yang Y., Partial oxidation of methane to carbon monoxide and hydrogen over NiO/La2O3/g-Al2O3, Appl. Catal. A, 1996; 134, 67 - 80.Google Scholar

  • Machida M., Eguchi K., Arai H., Analytical electron microscope analysis of the formation of BaO·6Al2O3, J. Amer. Cer. Soc., 1988; 71, 1142 - 1147.Google Scholar

  • Xua Z., Zhen M., Bi Y., Zhena K., Catalytic properties of Ni modified hexaaluminates LaNiyAl12-yO19 for CO2 reforming of methane to synthesis gas, Appl. Catal. A, 2000; 198, 267 - 273.Google Scholar

  • Huang T.-J., Huang M.-C., Effect of Ni content on hydrogen production via steam reforming of methane over Ni/GDC catalysts, Chem. Eng. J., 2008; 145, 149 - 153.Google Scholar

  • Roh H.-S., Koo K. Y., Yoon W. L., Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process, Catal. Today, 2009; 146, 71-75.Google Scholar

  • Vedrine J. C., Hollinger G., Duc T. M., Investigation of antigorite and nickel supported catalysts by x-ray photoelectron spectroscopy, J. Phys. Chem., 1978; 82, 1515-1520Google Scholar

About the article


Received: 2012-04-16

Accepted: 2012-05-29

Published Online: 2012-08-09


Citation Information: Catalysis for Sustainable Energy, Volume 1, Pages 11–21, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2012-0002.

Export Citation

©2012 Versita Sp. z o.o.. This content is open access.

Comments (0)

Please log in or register to comment.
Log in