Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading

Zhong He
  • Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xianqin Wang
  • Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-19 | DOI: https://doi.org/10.2478/cse-2012-0004


Hydrodeoxygenation (HDO) process is the most promising route to upgrade pyrolysis bio-oils for producing liquid transportation fuels. The catalysts used and the quality of bio-oils have played important roles for how successful such process is. This review has addressed recent advances in HDO of pyrolysis bio-oils over many different types of catalysts, concentrating on the investigations of reasons why current catalysts have showed poor stability and have hindered pyrolysis oil HDO process in industrial scale: (i) The chemistry of model compounds from pyrolysis bio-oils is discussed in detail including aldehydes, carboxylic acids, carbohydrates, guaiacols, furfurals, alcohols, and ketones. The reactions occur via different routes over different catalysts with different products. (ii) The reaction mechanisms of different types of catalysts are elaborated, including classical sulfided hydrotreating catalysts, noble metals, sulfides, phosphides, carbides, nitrides, non-precious metals, metal oxides, bimetallic amorphous boron-based catalysts, and reduced metal oxide bronzes. Oxygen from oxy-compounds is absorbed on coordinatively unsaturated metal sites (oxygen vacancies) on metal oxide supports through Lewis acid/base interaction, or on H in -OH that is attached to non-metal oxides such as SiO2, or even on metal sites such as noble metals. -H donation is available directly from phosphides, carbides, nitrides, Brønsted acid -OH groups or -SH groups and from metals by H spillover. The activated H species then react with oxy-organics and give hydrodeoxygenated products. (iii) The importance of supports and contribution of different supports to HDO are also covered in this review. (iv) Catalyst deactivation mechanisms were elucidated. Coking formation is proven to be the main reason for catalyst deactivation because of polymerization and polycondensation reactions. The extent of coking formation depends on the type of oxy-compounds, nature of catalysts such as acidity, and operation conditions. A robust catalyst that withstands coking, high concentration of water and poisoning, and can be regenerated easily without losing too much activity is highly desired for pyrolysis oil HDO process and finally applied in industrial scale for raw pyrolysis oil upgrading.

Keywords: Hydrodeoxygenation; Pyrolysis bio-oil upgrading; Model compounds; Mechanisms; Deactivation

  • Lange, J.-P., Lignocellulose conversion: an introduction to chemistry, process and economics, Biofuels, Bioproducts and Biorefining, 2007, 1, 39-48Google Scholar

  • Statistical Review of World Energy, available from http://www.bp.com/Google Scholar

  • Peter, M., Energy production from biomass (part 1): overview of biomass, Bioresource Technology, 2002, 83, 37-46Google Scholar

  • Davidson, S., Sustainable bioenergy: Genomics and biofuels development, Nature Education, 2008, 1,Google Scholar

  • van Ruijven, B., van Vuuren, D.P., Oil and natural gas prices and greenhouse gas emission mitigation, Energy Policy, 2009, 37, 4797-4808Google Scholar

  • Duan, P., Savage, P.E., Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies, Energy & Environmental Science, 2011, 4, 1447-1456Google Scholar

  • Luque, R., Menendez, J.A., Arenillas, A., Cot, J., Microwaveassisted pyrolysis of biomass feedstocks: the way forward?, Energy & Environmental Science, 2012, 5, 5481-5488CrossrefGoogle Scholar

  • Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D., A review of catalytic upgrading of biooil to engine fuels, Applied Catalysis A: General, 2011, 407, 1-19Google Scholar

  • Elliott, D.C., Baker, E.G., Beckman, D., Solantausta, Y., Tolenhiemo, V., Gevert, S.B., Hörnell, C., Östman, A., Kjellström, B., Technoeconomic assessment of direct biomass liquefaction to transportation fuels, Biomass, 1990, 22, 251-269Google Scholar

  • Huber, G.W., Iborra, S., Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical reviews, 2006, 106, 4044-4098Google Scholar

  • Czernik, S., Bridgwater, A.V., Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels, 2004, 18, 590-598Google Scholar

  • Furimsky, E., Catalytic hydrodeoxygenation, Applied Catalysis A: General, 2000, 199, 147-190Google Scholar

  • Zhu, X., Lobban, L.L., Mallinson, R.G., Resasco, D.E., Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst, Journal of Catalysis, 2011, 281, 21-29Google Scholar

  • Honkela, M.L., Viljava, T.-R., Gutierrez, A., Krause, A.O.I., Chapter 11 Hydrotreating for Bio-Oil Upgrading, in: Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, The Royal Society of Chemistry, 2010, pp. 288-306Google Scholar

  • Elliott, D.C., Historical Developments in Hydroprocessing Bio-oils, Energy & Fuels, 2007, 21, 1792-1815Google Scholar

  • Taufiqurrahmi, N., Bhatia, S., Catalytic cracking of edible and non-edible oils for the production of biofuels, Energy & Environmental Science, 2011, 4, 1087-1112Google Scholar

  • Marinangeli, R., Marker, T., Petri, J., Kalnes, T., McCall, M., Mackowiak, D., Jerosky, B., Reagan, B., Nemeth, L., Krawczyk, M., Czernik, S., Elliott, D., Shonnard, D., Opportunities for biorenewables in oil refineries, in: Department of Energy Final Technical Report, U.S. Department of Energy, Des Plaines, 2005.Google Scholar

  • Ramanathan, S., Oyama, S.T., New Catalysts for Hydroprocessing: Transition Metal Carbides and Nitrides, The Journal of Physical Chemistry, 1995, 99, 16365-16372Google Scholar

  • Bridgwater, A.V., Czernik, S., Piskorz, J., in: A.V. Bridgwater (Ed.) Fast pyrolysis of biomass: A handbook, Volume 2, CPL Press, Newbury, 2002, pp. 1-19.Google Scholar

  • Grange, P., Laurent, E., Maggi, R., Centeno, A., Delmon, B., Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study, Catalysis Today, 1996, 29, 297-301Google Scholar

  • Sharma, R.K., Bakhshi, N.N., Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals, The Canadian Journal of Chemical Engineering, 1991, 69, 1071-1081Google Scholar

  • Bridgwater, A.V., Catalysis in thermal biomass conversion, Applied Catalysis A: General, 1994, 116, 5-47Google Scholar

  • Elliott, D.C., Neuenschwander, G.G., Liquid fuels by lowseverity hydrotreating of biocrude, in: A.V. Bridgwater, D.G.B. Boocock (Eds.) Developments in thermochemical biomass conversion, Backie Academic & Professional, London, 1997, pp. 611-621.Google Scholar

  • Zhang, Q., Chang, J., Wang, T., Xu, Y., Review of biomass pyrolysis oil properties and upgrading research, Energy Conversion and Management, 2007, 48, 87-92Google Scholar

  • Pestman, R., Koster, R.M., Boellaard, E., van der Kraan, A.M., Ponec, V., Identification of the Active Sites in the Selective Hydrogenation of Acetic Acid to Acetaldehyde on Iron Oxide Catalysts, Journal of Catalysis, 1998, 174, 142-152Google Scholar

  • Rachmady, W., Vannice, M.A., Acetic Acid Reduction by H2 over Supported Pt Catalysts: A DRIFTS and TPD/TPR Study, Journal of Catalysis, 2002, 207, 317-330Google Scholar

  • Yang, Y.-n., Zhang, H.-k., En-jing, L., Zhang, C.-h., Ren, J., Effect of Fe, Mo promoters on acetic acid hydrodeoxygenation performance of nickel-based catalyst, Journal of Molecular Catalysis (China), 2011, 25, 30-36Google Scholar

  • Chen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., Li, Y., Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts, Journal of Molecular Catalysis A: Chemical, 2011, 351, 217-227Google Scholar

  • He, Z., Wang, X., Highly selective ethane production from acetic acid hydrodeoxygenation over transition metal oxide catalysts, 2012, in preparationGoogle Scholar

  • Monnier, J., Sulimma, H., Dalai, A., Caravaggio, G., Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides, Appl. Catal., A, 2010, 382, 176-180Google Scholar

  • Procházková, D., Zámostný, P., Bejblová, M., Červený, L., Čejka, J., Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts, Applied Catalysis A: General, 2007, 332, 56-64Google Scholar

  • Modak, A., Deb, A., Patra, T., Rana, S., Maity, S., Maiti, D., A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst, Chemical Communications, 2012, 48, 4253-4255CrossrefGoogle Scholar

  • Dupont, C., Lemeur, R., Daudin, A., Raybaud, P., Hydrodeoxygenation pathways catalyzed by MoS2 and NiMoS active phases: A DFT study, Journal of Catalysis, 2011, 279, 276-286Google Scholar

  • Peng, B., Zhao, C., Mejía-Centeno, I., Fuentes, G.A., Jentys, A., Lercher, J.A., Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3, Catalysis Today, 2012, 183, 3-9Google Scholar

  • Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A., Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates, Science, 2005, 308, 1446-1450Google Scholar

  • Weingarten, R., Tompsett, G.A., Conner Jr, W.C., Huber, G.W., Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites, Journal of Catalysis, 2011, 279, 174-182Google Scholar

  • Bui, V.N., Laurenti, D., Afanasiev, P., Geantet, C., Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity, Applied Catalysis B: Environmental, 2011, 101, 239-245Google Scholar

  • Sepúlveda, C., Leiva, K., García, R., Radovic, L.R., Ghampson, I.T., DeSisto, W.J., Fierro, J.L.G., Escalona, N., Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons, Catalysis Today, 2011, 172, 232-239Google Scholar

  • Lee, C.R., Yoon, J.S., Suh, Y.-W., Choi, J.-W., Ha, J.-M., Suh, D.J., Park, Y.-K., Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol, Catalysis Communications, 2012, 17, 54-58Google Scholar

  • Bykova, M.V., Ermakov, D.Y., Kaichev, V.V., Bulavchenko, O.A., Saraev, A.A., Lebedev, M.Y., Yakovlev, V.А., Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study, Applied Catalysis B: Environmental, 2012, 113-114, 296-307Google Scholar

  • Ghampson, I.T., Sepúlveda, C., Garcia, R., Frederick, B.G., Wheeler, M.C., Escalona, N., DeSisto, W.J., Guaiacol transformation over unsupported molybdenum-based nitride catalysts, Applied Catalysis A: General, 2012, 413-414, 78-84Google Scholar

  • Ghampson, I.T., Sepúlveda, C., Garcia, R., Radovic, L.R., Fierro, J.L.G., DeSisto, W.J., Escalona, N., Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties, Applied Catalysis A: General, 2012, 439–440, 111-124Google Scholar

  • Viljava, T.R., Krause, A.O.I., Hydrotreating of compounds and mixtures of compounds having mercapto and hydroxyl groups, in: G.F. Froment, B. Delmon, P. Grange (Eds.) Studies in Surface Science and Catalysis, Elsevier, Oostende, 1997, pp. 343-352.Google Scholar

  • Gevert, B.S., Otterstedt, J.E., Massoth, F.E., Kinetics of the HDO of methyl-substituted phenols, Applied Catalysis, 1987, 31, 119-131Google Scholar

  • Girgis, M.J., Gates, B.C., Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Industrial & Engineering Chemistry Research, 1991, 30, 2021-2058CrossrefGoogle Scholar

  • Echeandia, S., Arias, P.L., Barrio, V.L., Pawelec, B., Fierro, J.L.G., Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors, Applied Catalysis B: Environmental, 2010, 101, 1-12Google Scholar

  • Ryymin, E.-M., Honkela, M.L., Viljava, T.-R., Krause, A.O.I., Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al2O3, Applied Catalysis A: General, 2010, 389, 114-121Google Scholar

  • Viljava, T.R., Komulainen, R.S., Krause, A.O.I., Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation, Catalysis Today, 2000, 60, 83-92Google Scholar

  • Zhao, C., He, J., Lemonidou, A.A., Li, X., Lercher, J.A., Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes, Journal of Catalysis, 2011, 280, 8-16Google Scholar

  • Massoth, F.E., Politzer, P., Concha, M.C., Murray, J.S., Jakowski, J., Simons, J., Catalytic Hydrodeoxygenation of Methyl-Substituted Phenols: Correlations of Kinetic Parameters with Molecular Properties, The Journal of Physical Chemistry B, 2006, 110, 14283-14291Google Scholar

  • Senol, O.I., Ryymin, E.M., Viljava, T.R., Krause, A.O.I., Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts, Journal of Molecular Catalysis A: Chemical, 2007, 277, 107-112Google Scholar

  • Viljava, T.R., Saari, E.R.M., Krause, A.O.I., Simultaneous hydrodesulfurization and hydrodeoxygenation: interactions between mercapto and methoxy groups present in the same or in separate molecules, Applied Catalysis A: General, 2001, 209, 33-43Google Scholar

  • Lin, Y.-C., Li, C.-L., Wan, H.-P., Lee, H.-T., Liu, C.-F., Catalytic Hydrodeoxygenation of Guaiacol on Rh-Based and Sulfided CoMo and NiMo Catalysts, Energy & Fuels, 2011, 25, 890-896Google Scholar

  • He, Z., Wang, X., Highly selective catalytic hydrodeoxygenation of bio-derived guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts, Journal of Catalysis, 2012, submittedGoogle Scholar

  • Bui, V.N., Toussaint, G., Laurenti, D., Mirodatos, C., Geantet, C., Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaïacol and SRGO mixed feed, Catalysis Today, 2009, 143, 172-178Google Scholar

  • Nimmanwudipong, T., Runnebaum, R., Block, D., Gates, B., Catalytic Reactions of Guaiacol: Reaction Network and Evidence of Oxygen Removal in Reactions with Hydrogen, Catalysis Letters, 2011, 141, 779-783Google Scholar

  • Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., Dufour, A., Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst, Applied Catalysis B: Environmental, In PressGoogle Scholar

  • Tyrone Ghampson, I., Sepúlveda, C., Garcia, R., García Fierro, J.L., Escalona, N., DeSisto, W.J., Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol, Applied Catalysis A: General, 2012, 435–436, 51-60Google Scholar

  • Ruiz, P.E., Frederick, B.G., De Sisto, W.J., Austin, R.N., Radovic, L.R., Leiva, K., García, R., Escalona, N., Wheeler, M.C., Guaiacol hydrodeoxygenation on MoS2 catalysts: Influence of activated carbon supports, Catalysis Communications, 2012, 27, 44-48Google Scholar

  • Sepúlveda, C., Escalona, N., García, R., Laurenti, D., Vrinat, M., Hydrodeoxygenation and hydrodesulfurization coprocessing over ReS2 supported catalysts, Catalysis Today,Google Scholar

  • Ruiz, P.E., Leiva, K., Garcia, R., Reyes, P., Fierro, J.L.G., Escalona, N., Relevance of sulfiding pretreatment on the performance of Re/ZrO2 and Re/ZrO2-sulfated catalysts for the hydrodeoxygenation of guayacol, Applied Catalysis A: General, 2010, 384, 78-83Google Scholar

  • Zhao, H.Y., Li, D., Bui, P., Oyama, S.T., Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts, Applied Catalysis A: General, 2011, 391, 305-310Google Scholar

  • Hong, D.-Y., Miller, S.J., Agrawal, P.K., Jones, C.W., Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts, Chemical Communications, 2010, 46, 1038-1040Google Scholar

  • Zhao, C., Kou, Y., Lemonidou, A.A., Li, X., Lercher, J.A., Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes, Angewandte Chemie, 2009, 121, 4047-4050Google Scholar

  • Ohta, H., Kobayashi, H., Hara, K., Fukuoka, A., Hydrodeoxygenation of phenols as lignin models under acidfree conditions with carbon-supported platinum catalysts, Chemical Communications, 2011, 47, 12209-12211CrossrefGoogle Scholar

  • Zhao, C., Kou, Y., Lemonidou, A.A., Li, X., Lercher, J.A., Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts, Chemical Communications, 2010, 46, 412-414Google Scholar

  • Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P.B., Resasco, D.E., Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts, Journal of Catalysis, 2011, 277, 1-13Google Scholar

  • Sitthisa, S., Resasco, D., Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni, Catalysis Letters, 2011, 141, 784-791Google Scholar

  • Sitthisa, S., Pham, T., Prasomsri, T., Sooknoi, T., Mallinson, R.G., Resasco, D.E., Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts, Journal of Catalysis, 2011, 280, 17-27Google Scholar

  • Laurent, E., Delmon, B., Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalyst: II. Influence of water, ammonia and hydrogen sulfide, Applied Catalysis A: General, 1994, 109, 97-115Google Scholar

  • Bui, V.N., Laurenti, D., Delichère, P., Geantet, C., Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity, Applied Catalysis B: Environmental, 2011, 101, 246-255Google Scholar

  • Senol, O.I., Viljava, T.R., Krause, A.O.I., Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts, Catalysis Today, 2005, 100, 331-335Google Scholar

  • Laurent, E., Delmon, B., Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes, Appl. Catal. A, 1994, 109, 77-96Google Scholar

  • Toba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., Yoshimura, Y., Hydrodeoxygenation of waste vegetable oil over sulfide catalysts, Catalysis Today, 2011, 164, 533-537Google Scholar

  • Krar, M., Kasza, T., Kovacs, S., Kallo, D., Hancsok, J., Bio gas oils with improved low temperature properties, Fuel Processing Technology, 2011, 92, 886-892Google Scholar

  • Romero, Y., Richard, F., Brunet, S., Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism, Appl. Catal., B, 2010, 98, 213-223Google Scholar

  • Senol, O.I., Viljava, T.R., Krause, A.O.I., Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts, Appl. Catal., A, 2007, 326, 236-244Google Scholar

  • Şenol, O.İ., Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels, in: Department of Chemical Technology, Helsinki University of Technology, Espoo, Finland, 2007, pp. 59.Google Scholar

  • Senol, O.I., Viljava, T.R., Krause, A.O.I., Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: The effect of water, Catalysis Today, 2005, 106, 186-189Google Scholar

  • Kubicka, D., Simacek, P., Zilkova, N., Transformation of Vegetable Oils into Hydrocarbons over Mesoporous-Alumina-Supported CoMo Catalysts, Topics in Catalysis, 2009, 52, 161-168CrossrefGoogle Scholar

  • Viljava, T.R., Komulainen, S., Selvam, T., Krause, A.O.I., Stability of CoMo/Al2O3 catalysts: effect of HDO cycles on HDS, Studies in Surface Science and Catalysis, 1999, 127, 145-152Google Scholar

  • Pinheiro, A., Hudebine, D., Dupassieux, N., Geantet, C., Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment, Energy & Fuels, 2009, 23, 1007-1014CrossrefGoogle Scholar

  • Centeno, A., Laurent, E., Delmon, B., Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-Type Molecules, Journal of Catalysis, 1995, 154, 288-298Google Scholar

  • Helmut, W., Behaviour of Co-Mo-Al2O3 catalysts in the hydrodeoxygenation of phenols, Fuel, 1982, 61, 1021-1026Google Scholar

  • Laurent, E., Delmon, B., Deactivation of a sulfided NiMo/γ-Al2O3during the hydrodeoxygenation of bio-oils. Influence of a high water pressure, in: Studies in Surface Science and Catalysis, Elsevier, 1994, pp. 459-466.Google Scholar

  • Laurent, E., Delmon, B., Influence of water in the deactivation of a sulfided NiMo/γ-Al2O3 catalyst during hydrodeoxygenation, Journal of Catalysis, 1994, 146, 281-291Google Scholar

  • Ryymin, E.-M., Honkela, M.L., Viljava, T.-R., Krause, A.O.I., Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulfided NiMo/γ-Al2O3, Appl. Catal., A, 2010, 389, 114-121Google Scholar

  • Kubicka, D., Kaluza, L., Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts, Appl. Catal., A, 2010, 372, 199-208Google Scholar

  • Ryymin, E.-M., Honkela, M.L., Viljava, T.-R., Krause, A.O.I., Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst, Appl. Catal., A, 2009, 358, 42-48Google Scholar

  • Romero, Y., Richard, F., Reneme, Y., Brunet, S., Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst, Appl. Catal., A, 2009, 353, 46-53Google Scholar

  • Edelman, M.C., Maholland, M.K., Baldwin, R.M., Cowley, S.W., Vapor-phase catalytic hydrodeoxygenation of benzofuran, Journal of Catalysis, 1988, 111, 243-253Google Scholar

  • Krishnamurthy, S., Panvelker, S., Shah, Y.T., Hydrodeoxygenation of dibenzofuran and related compounds, AIChE Journal, 1981, 27, 994-1001Google Scholar

  • Leckel, D., Catalytic Hydroprocessing of Coal-Derived Gasification Residues to Fuel Blending Stocks: Effect of Reaction Variables and Catalyst on Hydrodeoxygenation (HDO), Hydrodenitrogenation (HDN), and Hydrodesulfurization (HDS), Energy & Fuels, 2006, 20, 1761-1766Google Scholar

  • Bunch, A.Y., Wang, X., Ozkan, U.S., Hydrodeoxygenation of benzofuran over sulfided and reduced Ni–Mo/γ-Al2O3 catalysts: Effect of H2S, Journal of Molecular Catalysis A: Chemical, 2007, 270, 264-272Google Scholar

  • Yoosuk, B., Tumnantong, D., Prasassarakich, P., Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation, Fuel, 2012, 91, 246-252Google Scholar

  • Topsoe, H., Clausen, B.S., Massoth, F.E., Hydrotreating catalysis, in: J.R. Anderson, M. Boudart (Eds.) Ctalysis Science and Technology, Springer Verlag, Berlin, Germany, 1996.Google Scholar

  • Brorson, M., Carlsson, A., Topsøe, H., The morphology of MoS2, WS2, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM, Catalysis Today, 2007, 123, 31-36Google Scholar

  • Chianelli, R.R., Berhault, G., Torres, B., Unsupported transition metal sulfide catalysts: 100 years of science and application, Catalysis Today, 2009, 147, 275-286Google Scholar

  • Yang, Y., Gilbert, A., Xu, C., Hydrodeoxygenation of biocrude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol, Appl. Catal., A, 2009, 360, 242-249Google Scholar

  • Cordero, R.L., Guerra, S.L., Fierro, J.L.G., Agudo, A.L., Formation of Al2(MoO4)3 and MoO3 phases induced by phosphate in molybdena-phosphorus catalysts, Journal of Catalysis, 1990, 126, 8-12Google Scholar

  • Lewis, J.M., Kydd, R.A., Boorman, P.M., Van Rhyn, P.H., Phosphorus promotion in nickel-molybdenum/alumina catalysts: model compound reactions and gas oil hydroprocessing, Applied Catalysis A: General, 1992, 84, 103-121Google Scholar

  • Inui, t., Fujimoto, K., Uchijima, T., Masai, M., New Aspects of Spillover Effect in Catalysis For Development of Highly Active Catalysts, Elsevier, Amsterdam, 1993.Google Scholar

  • Conner, W.C., Falconer, J.L., Spillover in Heterogeneous Catalysis, Chemical reviews, 1995, 95, 759-788Google Scholar

  • Leckel, D., Hydrodeoxygenation of Heavy Oils Derived From Low-Temperature Coal Gasification over NiW Catalysts—Effect of Pore Structure, Energy & Fuels, 2007, 22, 231-236Google Scholar

  • Gandarias, I., Barrio, V.L., Requies, J., Arias, P.L., Cambra, J.F., Guemez, M.B., From biomass to fuels: Hydrotreating of oxygenated compounds, International Journal of Hydrogen Energy, 2008, 33, 3485-3488Google Scholar

  • Smith, G.V., Notheisz, F., Heterogeneous Catalysis in Organic Chemistry, Academic Press, San Diego, 1999.Google Scholar

  • Elliott, D.C., Neuenschwander, G.G., Hart, T.R., Hu, J., Solana, A.E., Cao, C., Hydrogenation of Bio-oil for Chemicals and Fuels Production, in: A.V. Bridgwater, D.G.B. Boocock (Eds.) Science in Thermal and Chemical Biomass Conversion, CPL Press, Newbury, 2006, pp. 1536-1546.Google Scholar

  • Gutierrez, A., Kaila, R.K., Honkela, M.L., Slioor, R., Krause, A.O.I., Hydrodeoxygenation of guaiacol on noble metal catalysts, Catalysis Today, 2009, 147, 239-246Google Scholar

  • Centeno, A., Maggi, R., Delmon, B., Use of noble metals in hydrodeoxygenation reactions, Studies in Surface Science and Catalysis, 1999, 127, 77-84CrossrefGoogle Scholar

  • Ardiyanti, A.R., Gutierrez, A., Honkela, M.L., Krause, A.O.I., Heeres, H.J., Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts, Applied Catalysis A: General, 2011, 407, 56-66Google Scholar

  • Li, N., Huber, G.W., Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: Identification of reaction intermediates, Journal of Catalysis, 2010, 270, 48-59Google Scholar

  • Wang, Y., Fang, Y., He, T., Hu, H., Wu, J., Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite, Catalysis Communications, 2011, 12, 1201-1205CrossrefGoogle Scholar

  • Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide, Applied Catalysis A: General, 1998, 168, 219-228Google Scholar

  • Mendes, M.J., Santos, O.A.A., Jordão, E., Silva, A.M., Hydrogenation of oleic acid over ruthenium catalysts, Applied Catalysis A: General, 2001, 217, 253-262Google Scholar

  • Pestman, R., Koster, R.M., Pieterse, J.A.Z., Ponec, V., Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde, Journal of Catalysis, 1997, 168, 255-264Google Scholar

  • Mars, P., van Krevelen, D.W., Oxidations carried out by means of vanadium oxide catalysts, Chemical Engineering Science, 1954, 3, 41-59Google Scholar

  • Moberg, D.R., Thibodeau, T.J., Amar, F.o.G., Frederick, B.G., Mechanism of Hydrodeoxygenation of Acrolein on a Cluster Model of MoO3, The Journal of Physical Chemistry C, 2010, 114, 13782-13795Google Scholar

  • Cheng, J., Hu, P., Utilization of the Three-Dimensional Volcano Surface To Understand the Chemistry of Multiphase Systems in Heterogeneous Catalysis, Journal of the American Chemical Society, 2008, 130, 10868-10869Google Scholar

  • Channiwala, S.A., Parikh, P.P., A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 2002, 81, 1051-1063Google Scholar

  • Li, K., Wang, R., Chen, J., Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts, Energy & Fuels, 2011, 25, 854-863Google Scholar

  • Duan, X., Teng, Y., Wang, A., Kogan, V.M., Li, X., Wang, Y., Role of sulfur in hydrotreating catalysis over nickel phosphide, Journal of Catalysis, 2009, 261, 232-240Google Scholar

  • Oyama, S.T., Wang, X., Lee, Y.K., Chun, W.J., Active phase of Ni2P/SiO2 in hydroprocessing reactions, Journal of Catalysis, 2004, 221, 263-273Google Scholar

  • Whiffen, V.M.L., Smith, K.J., Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts, Energy & Fuels, 2010, 24, 4728-4737Google Scholar

  • Bowker, R.H., Smith, M.C., Pease, M.L., Slenkamp, K.M., Kovarik, L., Bussell, M.E., Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts, ACS Catal., 2011, 1, 917-922Google Scholar

  • Hicks, J.C., Advances in C–O Bond Transformations in Lignin-Derived Compounds for Biofuels Production, The Journal of Physical Chemistry Letters, 2011, 2, 2280-2287CrossrefGoogle Scholar

  • Talukdar, A.K., Bhattacharyya, K.G., Sivasanker, S., Hydrogenation of phenol over supported platinum and palladium catalysts, Applied Catalysis A: General, 1993, 96, 229-239CrossrefGoogle Scholar

  • Lee, J.S., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts, Journal of Catalysis, 1991, 128, 126-136Google Scholar

  • Djéga-Mariadassou, G., Boudart, M., Bugli, G., Sayag, C., Modification of the surface composition of molybdenum oxynitride during hydrocarbon catalysis, Catalysis Letters, 1995, 31, 411-420Google Scholar

  • Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides, Chemical reviews, 2004, 105, 185-212Google Scholar

  • Han, J., Duan, J., Chen, P., Lou, H., Zheng, X., Hong, H., Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chemistry, 2011, 13, 2561-2568Google Scholar

  • Zhang, W., Zhang, Y., Zhao, L., Wei, W., Catalytic Activities of NiMo Carbide Supported on SiO2 for the Hydrodeoxygenation of Ethyl Benzoate, Acetone, and Acetaldehyde, Energy & Fuels, 2010, 24, 2052-2059Google Scholar

  • Choi, J.-S., Bugli, G., Djéga-Mariadassou, G., Influence of the Degree of Carburization on the Density of Sites and Hydrogenating Activity of Molybdenum Carbides, Journal of Catalysis, 2000, 193, 238-247Google Scholar

  • Raje, A., Liaw, S.-J., Chary, K.V.R., Davis, B.H., Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: Comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal, Applied Catalysis A: General, 1995, 123, 229-250Google Scholar

  • Dolce, G.M., Savage, P.E., Thompson, L.T., Hydrotreatment activities of supported molybdenum nitrides and carbides, Energy & Fuels, 1997, 11, 668-675Google Scholar

  • Nagai, M., Transition-metal nitrides for hydrotreating catalyst--Synthesis, surface properties, and reactivities, Applied Catalysis A: General, 2007, 322, 178-190Google Scholar

  • Popov, A., Kondratieva, E., Goupil, J.M., Mariey, L., Bazin, P., Gilson, J.-P., Travert, A., Maugé, F., Bio-oils Hydrodeoxygenation: Adsorption of Phenolic Molecules on Oxidic Catalyst Supports, The Journal of Physical Chemistry C, 2010, 114, 15661-15670Google Scholar

  • Yakovlev, V.A., Khromova, S.A., Sherstyuk, O.V., Dundich, V.O., Ermakov, D.Y., Novopashina, V.M., Lebedev, M.Y., Bulavchenko, O., Parmon, V.N., Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel, Catalysis Today, 2009, 144, 362-366Google Scholar

  • Wang, X.-f., Wang, F., Chen, M.-y., Ren, J., Studies on nickelbased bimetallic catalysts for hydrodeoxygenation, Journal of Fuel Chemistry and Technology, 2005, 33, 612-616Google Scholar

  • Wang, X., Ozkan, U.S., Characterization of Active Sites over Reduced Ni−Mo/Al2O3 Catalysts for Hydrogenation of Linear Aldehydes, The Journal of Physical Chemistry B, 2005, 109, 1882-1890Google Scholar

  • Wang, W.-y., Yang, Y.-q., Bao, J.-g., Luo, H.-a., Characterization and catalytic properties of Ni–Mo–B amorphous catalysts for phenol hydrodeoxygenation, Catalysis Communications, 2009, 11, 100-105Google Scholar

  • Wang, W.-y., Yang, Y.-q., Luo, H.-a., Liu, W.-y., Effect of additive (Co, La) for Ni–Mo–B amorphous catalyst and its hydrodeoxygenation properties, Catalysis Communications, 2010, 11, 803-807Google Scholar

  • Wang, W., Yang, Y., Luo, H., Hu, T., Liu, W., Amorphous Co–Mo–B catalyst with high activity for the hydrodeoxygenation of bio-oil, Catalysis Communications, 2011, 12, 436-440CrossrefGoogle Scholar

  • Wang, W., Yang, Y., Luo, H., Peng, H., He, B., Liu, W., Preparation of Ni(Co)–W–B amorphous catalysts for cyclopentanone hydrodeoxygenation, Catalysis Communications, 2011, 12, 1275-1279CrossrefGoogle Scholar

  • Belatel, H., Al-Kandari, H., Al-Khorafi, F., Katrib, A., Garin, F., Catalytic reactions of methylcyclohexane (MCH) on partially reduced MoO3, Applied Catalysis A: General, 2004, 275, 141-147Google Scholar

  • Thibodeau, T.J., Canney, A.S., DeSisto, W.J., Wheeler, M.C., Amar, F.G., Frederick, B.G., Composition of tungsten oxide bronzes active for hydrodeoxygenation, Applied Catalysis A: General, 2010, 388, 86-95Google Scholar

  • Stakheev, A.Y., Kustov, L.M., Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Applied Catalysis A: General, 1999, 188, 3-35Google Scholar

  • Vissers, J.P.R., Scheffer, B., de Beer, V.H.J., Moulijn, J.A., Prins, R., Effect of the support on the structure of Mo-based hydrodesulfurization catalysts: Activated carbon versus alumina, Journal of Catalysis, 1987, 105, 277-284Google Scholar

  • Venderbosch, R.H., Ardiyanti, A.R., Wildschut, J., Oasmaa, A., Heeres, H.J., Stabilization of biomass-derived pyrolysis oils, Journal of Chemical Technology and Biotechnology, 2010, 85, 674-686Google Scholar

  • Chiranjeevi, T., Kumaran, G.M., Dhar, G.M., Synthesis, Characterization, and Evaluation of Mesoporous MCM-41-supported Molybdenum Hydrotreating Catalysts, Pet. Sci. Technol., 2008, 26, 690-703Google Scholar

  • Duan, J., Han, J., Sun, H., Chen, P., Lou, H., Zheng, X., Diesellike hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts, Catalysis Communications, 2012, 17, 76-80Google Scholar

  • Ferrari, M., Delmon, B., Grange, P., Influence of the active phase loading in carbon supported molybdenum-cobalt catalysts for hydrodeoxygenation reactions, Microporous and Mesoporous Materials, 2002, 56, 279-290Google Scholar

  • de la Puente, G., Gil, A., Pis, J.J., Grange, P., Effects of Support Surface Chemistry in Hydrodeoxygenation Reactions over CoMo/Activated Carbon Sulfided Catalysts, Langmuir, 1999, 15, 5800-5806Google Scholar

  • Ferrari, M., Bosmans, S., Maggi, R., Delmon, B., Grange, P., Influence of the hydrogen sulfide partial pressure on the hydrodeoxygenation reactions over sulfided CoMo/Carbon catalysts, Studies in Surface Science and Catalysis, 1999, 127, 85-95Google Scholar

  • Corma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chemical reviews, 1997, 97, 2373-2420Google Scholar

  • Kaluza, L., Zdrazil, M., Zilková, N., Cejka, J., High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina, Catalysis Communications, 2002, 3, 151-157Google Scholar

  • Gajardo, P., Mathieux, A., Grange, P., Delmon, B., Structure and catalytic activity of CoMo/γ-Al2O3 and CoMo/SiO2 hydrodesulphurization catalysts: an xps and esr characterization of sulfided used catalysts, Applied Catalysis, 1982, 3, 347-376Google Scholar

  • Jasik, A., Wojcieszak, R., Monteverdi, S., Ziolek, M., Bettahar, M.M., Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides, Journal of Molecular Catalysis A: Chemical, 2005, 242, 81-90Google Scholar

  • Popov, A., Kondratieva, E., Gilson, J.-P., Mariey, L., Travert, A., Maugé, F., IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation, Catalysis Today, 2011, 172, 132-135Google Scholar

  • Duchet, J.C., van Oers, E.M., de Beer, V.H.J., Prins, R., Carbon-supported sulfide catalysts, Journal of Catalysis, 1983, 80, 386-402Google Scholar

  • Figueiredo, J.L., Pereira, M.F.R., The role of surface chemistry in catalysis with carbons, Catalysis Today, 2010, 150, 2-7Google Scholar

  • Breysse, M., Portefaix, J.L., Vrinat, M., Support effects on hydrotreating catalysts, Catalysis Today, 1991, 10, 489-505Google Scholar

  • Pratt, K.C., Sanders, J.V., Christov, V., Morphology and activity of MoS2 on various supports: Genesis of the active phase, Journal of Catalysis, 1990, 124, 416-432Google Scholar

  • He, Z., Yang, M., Wang, X., Zhao, Z., Duan, A., Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming, Catalysis Today, (in press), 2012, DOI: 10.1016/j.cattod.2012.05.004,CrossrefGoogle Scholar

  • Savva, P.G., Goundani, K., Vakros, J., Bourikas, K., Fountzoula, C., Vattis, D., Lycourghiotis, A., Kordulis, C., Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques, Applied Catalysis B: Environmental, 2008, 79, 199-207Google Scholar

  • Furimsky, E., Massoth, F.E., Deactivation of hydroprocessing catalysts, Catalysis Today, 1999, 52, 381-495Google Scholar

  • Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., Zacher, A.H., Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products, Environmental Progress & Sustainable Energy, 2009, 28, 441-449CrossrefGoogle Scholar

  • Bridgwater, A.V., Production of high grade fuels and chemicals from catalytic pyrolysis of biomass, Catalysis Today, 1996, 29, 285-295Google Scholar

  • Ferrari, M., Maggi, R., Delmon, B., Grange, P., Influences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst, Journal of Catalysis, 2001, 198, 47-55Google Scholar

  • Hurff, S.J., Klein, M.T., Reaction pathway analysis of thermal and catalytic lignin fragmentation by use of model compounds, Industrial & Engineering Chemistry Fundamentals, 1983, 22, 426-430Google Scholar

  • Laurent, E., Centeno, A., Delmon, B., Coke Formation during the Hydrotreating of Biomass Pyrolysis Oils: Influence of Guaiacol Type Compounds, in: B. Delmon, G.F. Froment (Eds.) Studies in Surface Science and Catalysis, Elsevier, 1994, pp. 573-578.Google Scholar

  • Vispute, T.P., Zhang, H., Sanna, A., Xiao, R., Huber, G.W., Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils, Science, 2010, 330, 1222-1227Google Scholar

  • Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates, Angewandte Chemie International Edition, 2010, 49, 9859-9862Google Scholar

  • Yuan, Z., Wang, L., Wang, J., Xia, S., Chen, P., Hou, Z., Zheng, X., Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts, Applied Catalysis B: Environmental, 2011, 101, 431-440Google Scholar

  • Lu, J., Fu, B., Kung, M.C., Xiao, G., Elam, J.W., Kung, H.H., Stair, P.C., Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition, Science, 2012, 335, 1205-1208Google Scholar

  • Chopra, I.S., Chaudhuri, S., Veyan, J.F., Chabal, Y.J., Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen, Nature Materials, 2011, 10, 986-986Google Scholar

  • Mercader, F.d.M., Groeneveld, M.J., Kersten, S.R.A., Venderbosch, R.H., Hogendoorn, J.A., Pyrolysis oil upgrading by high pressure thermal treatment, Fuel, 2010, 89, 2829-2837Google Scholar

About the article

Received: 2012-06-08

Accepted: 2012-09-14

Published Online: 2012-10-19

Citation Information: Catalysis for Sustainable Energy, Volume 1, Pages 28–52, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2012-0004.

Export Citation

©2012 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Caroline Carriel Schmitt, Anna Zimina, Yakub Fam, Klaus Raffelt, Jan-Dierk Grunwaldt, and Nicolaus Dahmen
Catalysts, 2019, Volume 9, Number 9, Page 784
Madiha Yasir, Sujan Chowdhury, Nurlidia Mansor, Norani Muti Mohamed, and Yoshimitsu Uemura
Applied Mechanics and Materials, 2014, Volume 625, Page 357
Elias Aliu, Abarasi Hart, and Joseph Wood
Industrial & Engineering Chemistry Research, 2019, Volume 58, Number 33, Page 15162
Rashi Koul, Naveen Kumar, and R.C Singh
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, Page 1
Uliana Akhmetzyanova, Zdeněk Tišler, Nikita Sharkov, Lenka Skuhrovcová, Lenka Pelíšková, Oleg Kikhtyanin, Päivi Mäki‐Arvela, Maksym Opanasenko, Markus Peurla, and Dmitry Yu. Murzin
ChemistrySelect, 2019, Volume 4, Number 29, Page 8453
Yinglei Han, Mortaza Gholizadeh, Chi-Cong Tran, Serge Kaliaguine, Chun-Zhu Li, Mariefel Olarte, and Manuel Garcia-Perez
Fuel Processing Technology, 2019, Volume 195, Page 106140
Ahmed M. Lawal, Abarasi Hart, Helen Daly, Christopher Hardacre, and Joseph Wood
Industrial & Engineering Chemistry Research, 2019, Volume 58, Number 19, Page 7998
Abdulkareem-Alsultan, Asikin-Mijan, Lee, Rashid, Islam, and Taufiq-Yap
Catalysts, 2019, Volume 9, Number 4, Page 350
Andrew Ng Kay Lup, Faisal Abnisa, Wan Mohd Ashri Wan Daud, and Mohamed Kheireddine Aroua
Asia-Pacific Journal of Chemical Engineering, 2019, Volume 14, Number 2, Page e2293
Chrysovalantis C. Templis, Constantinos J. Revelas, Anestis A. Papastylianou, and Nikos G. Papayannakos
Industrial & Engineering Chemistry Research, 2019, Volume 58, Number 16, Page 6278
M. Alvarez-Galvan, Jose Campos-Martin, and Jose Fierro
Catalysts, 2019, Volume 9, Number 3, Page 293
Sai Teja Neeli, Rajdeep Shakya, Sushil Adhikari, and Hema Ramsurn
Energy & Fuels, 2019, Volume 33, Number 2, Page 1314
Natalia Pino, Robison Buitrago-Sierra, and Diana López
Waste and Biomass Valorization, 2019
Jorge Díaz de León, Chowdari Ramesh Kumar, Joel Antúnez-García, and Sergio Fuentes-Moyado
Catalysts, 2019, Volume 9, Number 1, Page 87
Kirtika Kohli, Ravindra Prajapati, and Brajendra Sharma
Energies, 2019, Volume 12, Number 2, Page 233
Caroline Carriel Schmitt, María Gagliardi Reolon, Michael Zimmermann, Klaus Raffelt, Jan-Dierk Grunwaldt, and Nicolaus Dahmen
Catalysts, 2018, Volume 8, Number 10, Page 449
Muhammad Abdus Salam, Derek Creaser, Prakhar Arora, Stefanie Tamm, Eva Lind Grennfelt, and Louise Olsson
Catalysts, 2018, Volume 8, Number 10, Page 418
E. Kordouli, B. Pawelec, C. Kordulis, A. Lycourghiotis, and J.L.G. Fierro
Applied Catalysis B: Environmental, 2018
Alexis Tirado, Jorge Ancheyta, and Fernando Trejo
Energy & Fuels, 2018
Caroline Carriel Schmitt, Klaus Raffelt, Anna Zimina, Bärbel Krause, Thomas Otto, Michael Rapp, Jan-Dierk Grunwaldt, and Nicolaus Dahmen
Topics in Catalysis, 2018
Rui Moreira, Elba Ochoa, José Pinilla, António Portugal, and Isabel Suelves
Catalysts, 2018, Volume 8, Number 4, Page 127
Luis Alvarado Rupflin, Chiara Boscagli, and Stephan Schunk
Catalysts, 2018, Volume 8, Number 3, Page 122
Olumide Winjobi, David R. Shonnard, and Wen Zhou
ACS Sustainable Chemistry & Engineering, 2017, Volume 5, Number 6, Page 4529
Simone Ansaloni, Nunzio Russo, and Raffaele Pirone
The Canadian Journal of Chemical Engineering, 2017, Volume 95, Number 9, Page 1730
Shouyun Cheng, Lin Wei, Xianhui Zhao, and James Julson
Catalysts, 2016, Volume 6, Number 12, Page 195
Bingji Ma and Foster Agblevor
Energy & Fuels, 2016, Volume 30, Number 12, Page 10524
Melanie Hellinger, Sina Baier, Peter Mortensen, Wolfgang Kleist, Anker Jensen, and Jan-Dierk Grunwaldt
Catalysts, 2015, Volume 5, Number 3, Page 1152
Abhijit Dutta, Joshua A. Schaidle, David Humbird, Frederick G. Baddour, and Asad Sahir
Topics in Catalysis, 2016, Volume 59, Number 1, Page 2
Brian M. Moreno, Ning Li, Jechan Lee, George W. Huber, and Michael T. Klein
RSC Advances, 2013, Volume 3, Number 45, Page 23769
Dallas J. Rensel, Sergei Rouvimov, Megan E. Gin, and Jason C. Hicks
Journal of Catalysis, 2013, Volume 305, Page 256

Comments (0)

Please log in or register to comment.
Log in