Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

CaO/Y2O3 pellets for reversible CO2 capture in sorption enhanced reforming process.

Vladimir S. Derevschikov
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anton I. Lysikov
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksey G. Okunev
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-02 | DOI: https://doi.org/10.2478/cse-2012-0005

Abstract

Pellets of a novel, high temperature CO2 sorbent, made of CaO-impregnated porous Y2O3, were prepared. Yttria pellets were synthesized from a mixture of yttria powder and a softener. A combination of ethylene glycol, used as a softener, and a casting method yielded mechanically stable pellets after calcination at 800ºC. Treatment of the Y2O3 support at higher temperatures further increases the pellets strength. The same effect of pellets strengthening was observed after yttria impregnation with CaO. Sorption capacity of the pellets with CaO content of 9 wt. %, measured at isothermal conditions of 740ºC, reaches 7.5 wt. % for shorter recarbonation time of 20 min and 8.5 wt. % for a longer time of 1 hour. In this respect, sorption properties of pelletized CaO/Y2O3 are similar to those of powdered material. A distinctive feature of the pelletized CaO/Y2O3 sorbent pretreated at high temperatures is the increase in capacity during the initial cycles.

Keywords: CO2 absorbent; Pellets; High temperature; Calcium oxide; Yttria

  • J. R. Hufton, S. Mayorga, S. Sircar, Sorption-enhanced reaction process for hydrogen production. AIChE J., 1999, 45, 248-256.CrossrefGoogle Scholar

  • J.M. Lee, Y.J. Min, K.B. Lee, S.G. Jeon, J.G. Na, H. J. Ryu, Enhancement of CO2 Sorption Uptake on Hydrotalcite by Impregnation with K2CO3. Langmuir, 2010, 26, 18788-18797. Web of ScienceGoogle Scholar

  • M.G. Beaver, H.S. Caram, S. Sircar, Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming. J. Power Sources, 2009, 195, 1998-2002. Web of ScienceGoogle Scholar

  • A. Lopez-Ortiz, N. G. P. Rivera, A. R. Rojas, D. L. Gutierrez, Novel carbon dioxide solid acceptors using sodium containing oxides. Sep. Sci. Technol., 2004, 39, 3559-3572. Google Scholar

  • H. K. Rusten, E. Ochoa-Fernandez, H. Lindborg,D. Chen, H.A. Jakobsen, Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2- acceptor. Ind. Eng. Chem. Res., 2007, 46, 8729-8737. Web of ScienceCrossrefGoogle Scholar

  • K. Essaki, T. Muramatsu, M. Kato, Effect of equilibrium shift by using lithium silicate pellets in methane steam reforming. Int. J. Hydrogen Energy, 2008, 33, 4555-4559. CrossrefWeb of ScienceGoogle Scholar

  • A.R. Brun-Tsekhovoi, A.N. Zadorin, Y.R. Katsobashvili, S.S. Kourdyumov, The Process of Catalytic Steam-Reforming of Hydrocarbons in the Presence of Carbon Dioxide Acceptor. In Hydrogen Energy Progress VII, in: Proceedings of the 7 th World Hydrogen Energy Conference, Moscow, U.S.S.R, Sep 25-29,1988;Veziroglu, T.N., Protsenko, A.N., Eds.; Pergamon Press: New-York, 1988; Vol. 2, p 885. Google Scholar

  • C. Han, D. P. Harrison, Multicycle performance of a singlestep process for H2 production. Sep. Sci. Technol., 1997, 32, 681-697. CrossrefGoogle Scholar

  • D. P. Harrison, Sorption-enhanced hydrogen production: A review. Ind. Eng. Chem. Res., 2008, 47, 6486-6501. CrossrefGoogle Scholar

  • A. I. Lysikov, A. N. Salanov, A. G. Okunev, Change of CO2 carrying capacity of CaO in isothermal recarbonationdecomposition cycles. Ind. Eng. Chem. Res, 2007, 46, 4633- 4638. Web of ScienceCrossrefGoogle Scholar

  • J.C. Abanades, G. Grasa, M. Alonso, N. Rodriguez, E. J. Anthony, and l. M. Romeo, | Cost Structure of a Postcombustion CO2 Capture System Using CaO. Environ. Sci. Technol., 2007, 41, 5523-5527. CrossrefWeb of ScienceGoogle Scholar

  • B. Feng, H. An, and E. Tan, . Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems. Energy Fuels, 2007, 21, 426-434. Web of ScienceCrossrefGoogle Scholar

  • N. Paterson, S. Elphick, D.R. Dugwell, R. Kandiyoti,. Calcium-based liquid phase formation in pressurized gasifier environments. Energy Fuels, 2001, 15, 894-902. CrossrefGoogle Scholar

  • S. Y. Lin, M. Harada, Y. Suzuki, H.Hatano, Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam [II] solid formation. Fuel, 2006, 85, 1143- 1150. CrossrefGoogle Scholar

  • S. Dobner, Cyclic calcination and recarbonation of calcined dolomite .Ind. Eng. Chem. Process Des.Dev., 1977, 16, 479 - 486. CrossrefGoogle Scholar

  • A. Silaban, M. Narcida, D. P. Harrison, Characteristics of the reversible reaction between CO2[g] and calcined dolomite. Chem. Eng. Commun., 1996, 146, 149-162. Google Scholar

  • J. S. Dennis, A. N. Hayhurst, The Effect of CO2 on the Kinetics and Extent of Calcination of Limestone and Dolomite Particles in Fluidized Beds. Chem. Eng. Sci., 1987, 42, 2361-2372. CrossrefGoogle Scholar

  • Z. S. Li, F. Fang, N. S. Cai, CO2 Capture from Flue Gases Using Three Ca-Based Sorbents in a Fluidized Bed Reactor. J. Environ. Eng., 2009, 135, 418-425. Web of ScienceGoogle Scholar

  • Z. S. Li, N. S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonationcalcination cycles for a new Ca-based CO2 sorbent. Ind. Eng. Chem. Res., 2006, 45, 1911-1917. CrossrefGoogle Scholar

  • V. Manovic, E. J. Anthony, Long-Term Behavior of CaO-Based Pellets Supported by Calcium Aluminate Cements in a Long Series of CO2 Capture Cycles. Ind. Eng. Chem. Res., 2009, 48, 8906-8912. Web of ScienceCrossrefGoogle Scholar

  • C. Qin, J. Yin, H. An, W. Liu, and B. Feng, Performance of Extruded Particles from Calcium Hydroxide and Cement for CO2 Capture. Energy Fuels, 2012, 26, 154–161. CrossrefWeb of ScienceGoogle Scholar

  • C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G.A. Bian, C. G. Zheng, Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture. Ind. Eng. Chem. Res., 2010, 49, 11778-11784. Web of ScienceGoogle Scholar

  • C. H. Huang, K. P. Chang, C. T. Yu, P. C. Chiang, C. F. Wang, Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica. Chem. Eng. J., 2010, 161, 129-135. Google Scholar

  • S. F. Wu, Y. Q. Zhu, Behavior of CaTiO3/Nano-CaO as a CO2 Reactive Adsorbent. Ind. Eng. Chem. Res., 2010, 49, 2701- 2706. CrossrefGoogle Scholar

  • V. S. Derevschikov, A. I. Lysikov, and A. G. Okunev, High Temperature CaO/Y2O3 Carbon Dioxide Absorbent with Enhanced Stability for Sorption-Enhanced Reforming Applications. Ind. &Eng. Chem. Res., 2011, 50, 12741–12749. CrossrefWeb of ScienceGoogle Scholar

  • R. Moreno, The role of slip additives in tape-casting technology. Part 1 – Sorbents and Dispersants .Am. Ceram. Soc. Bull., 1992, 10, 1521 – 1531. Google Scholar

  • R. Moreno, The role of slip additives in tape-casting technology. Part 2 - Binders and Plasticizers. Am. Ceram. Soc. Bull., 1992, 11, 1647 – 1657. Google Scholar

  • J. Mouzon, A. Maitre, L. Frisk, N. Lehto, M. Odeґn, Fabrication of transparent yttria by HIP and the glass-encapsulation method. J. Eur. Ceram. Soc., 2009, 29, 311–316. Web of ScienceCrossrefGoogle Scholar

  • M. Zhao, X. Yang, T. L. Church, and A. T. Harris, Novel CaO−SiO2 Sorbent and Bifunctional Ni/Co−CaO/SiO2 Complex for Selective H2 Synthesis from Cellulose. Environ. Sci. Technol., 2012, 46, 2976−2983.Web of ScienceCrossrefGoogle Scholar

About the article


Received: 2012-08-12

Accepted: 2012-08-18

Published Online: 2012-11-02


Citation Information: Catalysis for Sustainable Energy, Volume 1, Pages 53–59, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2012-0005.

Export Citation

©2012 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jung Kim and Woo Kwon
Sustainability, 2019, Volume 11, Number 3, Page 908
[2]
Jian Sun, Wenqiang Liu, Wenyu Wang, Yingchao Hu, Xinwei Yang, Hongqiang Chen, Yang Peng, and Minghou Xu
Energy & Fuels, 2016, Volume 30, Number 11, Page 9605
[3]
Yingchao Hu, Wenqiang Liu, Jian Sun, Xinwei Yang, Zijian Zhou, Yang Zhang, and Minghou Xu
Energy & Fuels, 2016, Volume 30, Number 8, Page 6606
[4]
Jian Sun, Wenqiang Liu, Yingchao Hu, Mingkui Li, Xinwei Yang, Yang Zhang, and Minghou Xu
Energy & Fuels, 2015, Volume 29, Number 10, Page 6636

Comments (0)

Please log in or register to comment.
Log in