Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Production of hydrogen from steam reforming of glycerol using nickel catalysts supported on Al2O3, CeO2 and ZrO2

Robinson L. Manfro
  • Escola de Química, Federal University of Rio de Janeiro - UFRJ, Centro de Tecnologia, Bloco E, sala 206, CEP 21941-909, Rio de Janeiro/RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nielson F.P. Ribeiro
  • Escola de Química, Federal University of Rio de Janeiro - UFRJ, Centro de Tecnologia, Bloco E, sala 206, CEP 21941-909, Rio de Janeiro/RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana M.V.M. Souza
  • Escola de Química, Federal University of Rio de Janeiro - UFRJ, Centro de Tecnologia, Bloco E, sala 206, CEP 21941-909, Rio de Janeiro/RJ, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-18 | DOI: https://doi.org/10.2478/cse-2013-0001


Nickel catalysts supported on Al2O3, CeO2 and ZrO2 were prepared by wet impregnation method and evaluated in steam reforming of glycerol. The catalysts were characterized by chemical composition, textural analysis, crystalline structure and reducibility. The structural characterization of the catalysts revealed a good dispersion of Ni particles using the Al2O3 support, needing higher reduction temperature. The reactions were performed at 500°C with 10 vol.% glycerol solution in a continuous flow reactor. All catalysts showed conversions close to 100%. The selectivity to gas products and formation of liquid by-products were found to be dependent on the type of support. The H2 selectivity showed the following trend: ZrO2 > Al2O3 ≈ CeO2. The catalyst supported on CeO2 showed low activity for water-gas shift reaction, with the highest CO selectivity. All catalysts presented a low formation of CH4. In the liquid phase some by-products were identified (hydroxyacetone, acetic acid, lactic acid, acetaldehyde, acrolein and ethanol) and secondary reaction routes were proposed. Coke formation was higher on Ni/Al2O3 catalyst, but no deactivation was observed during 8 h of reaction.

Keywords: Hydrogen; Glycerol; Steam reforming; Nickel; Catalysts

  • Shahid E.M., Jamal Y., A review of biodiesel as vehicular fuel, Renewable Sustainable Energy Rev., 2008; 12, 2484–2494. Web of ScienceGoogle Scholar

  • Dunn S., Hydrogen futures: toward a sustainable energy system, Int. J Hydrogen Energy, 2002; 27, 235–264. Google Scholar

  • Adhikari S., Fernando S.D., Haryanto A., Hydrogen production from glycerin by steam reforming over nickel catalysts, Renewable Energy, 2008; 33, 1097–1100. Web of ScienceGoogle Scholar

  • Kirtay E., Recent advances in production of hydrogen from biomass, Energy Conv Manag, 2011; 52, 1778–1789. Web of ScienceGoogle Scholar

  • Johnson D.T., Taconi K.A., The glycerin glut: options for the value-added Conversion of crude glycerol resulting from biodiesel production, Environ Progress, 2007; 26, 338–348. Web of ScienceGoogle Scholar

  • Cortright R.D., Davda R.R., Dumesic J.A., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature, 2002; 418, 964–967. Google Scholar

  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D., Dumesic J.A., A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts, Appl. Catal. B Environ, 2005; 56, 171–186. Google Scholar

  • Adhikari S., Fernando S.D., Haryanto A., Production of hydrogen by steam reforming of glycerin over aluminasupported metal catalysts, Catal. Today, 2007; 129, 355– 364. Google Scholar

  • Sehested J., Four challenges for nickel steam-reforming catalysts, Catal. Today, 2006; 111, 103–110. Google Scholar

  • Chiodo V., Freni S., Galvagno A., Mondello N., Frusteri F., Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen, Appl. Catal. A Gen., 2010; 381, 1–7. Google Scholar

  • Huber G.W., Shabaker J.W., Dumesic J.A., Raney Ni- Sn Catalyst for H2 production from biomass-derived hydrocarbons, Science, 2003; 300, 2075–2077. Google Scholar

  • Jun K.W., Roh H.S., Chary K.V.R., Structure and Catalytic Properties of Ceria-based Nickel Catalysts for CO2 Reforming of methane, Catal. Surv. Asia, 2007; 11, 97–113. Web of ScienceGoogle Scholar

  • Suzuki T., Morikawa A., Suda A., Sobukawa H., Sugiura M., Kanazawa T., Suzuki J., Takada T., Alumina-ceria-zirconia composite oxide for three-way catalyst, R&D Review of Toyota CRDL, 2002; 37, 28–33. Google Scholar

  • Souza M.M.V.M., Aranda D.A.G., Schmal M., Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts, .J Catal., 2001; 204, 498-511. Google Scholar

  • Zhuang Q., Qin Y., Chang L., Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steamreforming, Appl. Catal., 1991; 70, 1–8. Google Scholar

  • Tang S., Ji L., Lin J., Zeng H.C., Tan K.L., Li K., CO2 reforming of methane to synthesis gas over sol–gel-made Ni/γ-Al2O3 catalysts from organometallic precursors, J. Catal., 2000; 194, 424–30. Google Scholar

  • Therdthianwong S., Siangchin C., Therdthianwong A., Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/ CO2 reforming by ZrO2 addition, Fuel Proc. Tech., 2008; 89, 160–168. Google Scholar

  • Roh H.-S., Potdar H.S., Jun K.-W., Carbon dioxide reforming of methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni– Ce–ZrO2 catalysts, Catal. Today, 2004; 93-95, 39–44. Google Scholar

  • Kim P., Kim Y., Kim H., Song I.K., Yi J., Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas, Appl. Catal. A Gen., 2004; 272, 157–166. Google Scholar

  • Zhu X., Huo P., Zhang Y., Cheng D., Liu C., Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane, Appl. Catal. B Environ., 2008; 81, 132–140. Google Scholar

  • Molina R., Poncelet G., α-alumina-supported nickel catalysts prepared from nickel acetylacetonate: A TPR study, J. Catal., 1998; 173, 257–267. Google Scholar

  • Zhang B., Tang X., Li Y., Xu Y., Shen W., Hydrogen production from steam reforming of ethanol and glycerol over ceriasupported metal catalysts, Int. J. Hydrogen Energy, 2007; 32, 2367–2373. Google Scholar

  • Wang Y., Zhu A., Zhang Y., Au C.T., Yang X., Shi C., Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction, Appl. Catal. B Environ., 2008; 81, 141–149. Google Scholar

  • Shyu J.Z., Weber W.H., Gandhi H.S., Surface characterization of alumina-supported ceria, J. Phys. Chem., 1988; 92, 4964–4970. Google Scholar

  • Dong W.-S., Roh H.-S., Jun K.-W., Park S.-E., Oh Y.-S., Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content, Appl. Catal. A Gen., 2002; 226, 63–72. Google Scholar

  • Xu S., Wang X., Highly active and coking resistant Ni/CeO2– ZrO2 catalyst for partial oxidation of methane, Fuel, 2005; 84, 563–567. Google Scholar

  • Youn M.H., Seo J.G., Kim P., Kim J.J., Lee H.-I., Song I.K., Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al2O3 catalysts: Effect of second metal addition, Journal of Power Sources, 2006; 162, 1270–1274. Google Scholar

  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Güemez M.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G., Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen, Catal. Comm., 2009; 10, 1275-1278. Google Scholar

  • Grenoble D.C., Estadt M.M., Ollis D.F., The chemistry and catalysis of the water gas shift reaction : 1. The kinetics over supported metal catalysts, J. Catalysis, 1981; 67, 90–102. Google Scholar

  • Ramírez-López C.A., Ochoa-Gómez J.R., Fernández- Santos M., Gómez-Jiménez-Aberasturi O., Alonso-Vicario A., Torrecilla-Soria J., Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration, Ind. Eng. Chem. Res., 2010; 49, 6270–6278. Web of ScienceGoogle Scholar

  • Marins EP, Davis RJ. Hydrogenolysis of glycerol over carbonsupported Ru and Pt catalysts. J Catal 2007;249: 328–337. Google Scholar

  • Chheda J.N., Huber G.W., Dumesic J.A., Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew. Chem. Int. 2007; 46, 7164–7183. Web of ScienceGoogle Scholar

  • Chai S.-H., Wang H.-P., Liang Y., Xu B.-Q., Sustainable production of acroleína: investigation of solid acid-base catalysts for gas-phase dehydration of glycerol, Green Chem., 2007; 9, 1130–1136. Web of ScienceCrossrefGoogle Scholar

  • Corma A., Huber G.W., Sauvanaud L., O’Connor P., Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network, J. Catal. 2008; 257, 163–171. Google Scholar

  • Pompeo F., Santori G., Nichio N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts, In.t J. Hydrogen Energy, 2010; 35, 8912–8920. Google Scholar

  • King D.L., Zhang L., Xi G., Karim A.M., Heldebrant D.J., Wang X., Petersona T., Wang Y., Aqueous phase reforming of glycerol for hydrogen production over Pt–Re supported on carbon, Appl. Catal. B Environ., 2010; 99, 206–213. Google Scholar

  • Sánchez-Sánchez M.C., Navarro R.M., Fierro J.L.G., Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading, Catal. Today, 2007; 129, 336–345. Google Scholar

  • Srisiriwat N., Therdthianwong S., Therdthianwong A., Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2, Int. J. Hydrogen Energy, 2009; 34, 2224–2234. CrossrefGoogle Scholar

  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Guemez M.B., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G., Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina, Int. J. Hydrogen Energy, 2010; 35, 11622–11633. CrossrefGoogle Scholar

  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Guemez M.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G., Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La, Top. Catal., 2008; 49, 46–58. Google Scholar

  • Adhikari S., Fernando S.D., Filip To S.D., Brick R.M., Steele P.H., Haryanto A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts, Energy Fuels, 2008; 22, 1220–1226. Google Scholar

  • Menezes A.O., Rodrigues M.T., Zimmaro A., Borges L.E.P., Fraga M.A., Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides, Renewable Energy, 2011; 36, 595–599.Web of ScienceGoogle Scholar

About the article

Received: 2012-11-27

Accepted: 2013-01-04

Published Online: 2013-03-18

Citation Information: Catalysis for Sustainable Energy, Volume 1, Pages 60–70, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2013-0001.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Usman Nda-Umar, Irmawati Ramli, Yun Taufiq-Yap, and Ernee Muhamad
Catalysts, 2018, Volume 9, Number 1, Page 15
Oleg Smorygo, Alexander Marukovich, Vitali Mikutski, and Vladislav Sadykov
Journal of Advanced Ceramics, 2014, Volume 3, Number 3, Page 230
Gullapelli Sadanandam, Kasala Ramya, Donthamsetti Bhanu Kishore, Valluri Durgakumari, Machiraju Subrahmanyam, and Komandur V. R. Chary
RSC Adv., 2014, Volume 4, Number 61, Page 32429

Comments (0)

Please log in or register to comment.
Log in