Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Porous substrates for intermediate temperature SOFCs and in-cell reforming catalysts

Oleg Smorygo / Vladislav Sadykov
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vitali Mikutski
  • Department of Porous Materials, Powder Metallurgy Institute; 41, Platonov str., Minsk 220005, Belarus
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Marukovich
  • Department of Porous Materials, Powder Metallurgy Institute; 41, Platonov str., Minsk 220005, Belarus
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aliaksandr Ilyushchanka
  • Department of Porous Materials, Powder Metallurgy Institute; 41, Platonov str., Minsk 220005, Belarus
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Yarkovich
  • Department of Porous Materials, Powder Metallurgy Institute; 41, Platonov str., Minsk 220005, Belarus
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Mezentseva
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ludmila Bobrova
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yulia Fedorova
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Pelipenko
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Arapova
  • Laboratory of Deep Oxidation Catalysts, Boreskov Institute of Catalysis; 5, Lavrentiev Ave., Novosibirsk 63009, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alevtina Smirnova
  • Chemistry Department, South Dakota School of Mines and Technology, 501 E. St Joseph str., Rapid City, SD 57701, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-24 | DOI: https://doi.org/10.2478/cse-2013-0005

Abstract

The paper reviews results of development of new composite foam substrates with the graded structure for the intermediate temperature SOFC and structured catalysts of fuels reforming. Ni-Al substrates with porosity of 60-80% were prepared by compressive deformation of open cell metal foams followed by pack aluminizing. Testing in corrosive media revealed advantages of Ni-Al substrates over Fechraloy ones. Button-size thin film solid oxide fuel cell supported on this substrate demonstrated promising performance in the intermediate temperature range. These substrates were shown to be compatible with nanocomposite active components for the fuel reforming comprised of Ni-based alloys strongly interacting with perovskite/fluorite complex oxides with a high oxygen mobility and reactivity. High activity and coking stability of these structured catalysts in steam/autothermal reforming of natural gas, ethanol and acetone was demonstrated without a remarkable impact of heat and mass transfer. A close performance was demonstrated for fuel cells operating on wet H2 or in the mode of internal reforming of natural gas using these catalysts. A concept of the substrate with the graded pore structure and composition was offered.

Keywords: SOFC substrate; Porous; Graded design; Composite structure

  • Dokiya M., SOFC system and technology, Solid State Ionics, 2002, 152– 153, 383–392. Google Scholar

  • Matus Y.B., De Jonghe L.C., Jacobson C.P., Visco S.J., Metal-supported solid oxide fuel cell membranes for rapid thermal cycling, Solid State Ionics, 2005, 176, 443-449. Google Scholar

  • Tietz F., Buchkremer H.-P., Stover D., Components manufacturing for solid oxide fuel cells, Solid State Ionics, 2002, 152– 153, 373-381. Google Scholar

  • Minh N.Q., Solid oxide fuel cell technology—features and application, Solid State Ionics, 2004, 174, 271-277. Google Scholar

  • Brandner M., Bram M., Froitzheim J., Buchkremer H.P., Stöver D., Electrically Conductive diffusion barrier layers for metal-supported SOFC, Solid State Ionics, 2008, 179, 1501- 1504. Google Scholar

  • Brandon N.P., Corcoran D., Cummins D., Duckett A., El- Khoury K. et al., Development of metal supported solid oxide fuel cells for operation at 500-600°C, J. Mater. Eng. Perform., 2004, 13, 253-256. Google Scholar

  • Tucker M.C., Sholklapper T. Z., Lau G.Y., De Jonghe L.C., Visco S.J., Progress in metal-supported SOFCs, ECS Transactions, 2009, 25, 673-680. Google Scholar

  • Franco T., Brandner M., Rüttinger M., Kunschert G., Venskutonis A., Sigl L.S., Recent development aspects of metal supported thin-film SOFC, ECS Transactions, 2009, 25, 681-688. Google Scholar

  • Szabo1 P., Arnold J., Franco T., Gindrat M., Refke A., Zagst A., Ansar A., Progress in the metal supported solid oxide fuel cells and stacks for APU, ECS Transactions, 2009, 25, 175- 185. Google Scholar

  • Leonov A.N., Smorygo О.L., Sheleg V.K., Monolithic Catalyst Supports with Foam Structure, React. Kinet. Catal. L., 1997, 60, 259-267. Google Scholar

  • Leonov A., Romashko A., Laminar Ni-NixAl-aAl2O3 foam material with high oxidation resistance, in: Banhart J., Fleck N.A. (Eds.), Cellular Metals: Manufacture, Properties, Applications, 2003, Verlag MIT Publishing, Berlin, 2003, 271- 274. Google Scholar

  • Smorygo O., Mikutski V., Marukovich A., Vialiuha Yu., Ilyushchanka A., et al., Structured catalyst supports and catalysts for the methane indirect internal steam reforming in the intermediate temperature SOFC, Int. J. Hydrogen Energ., 2009, 34, 9505-9514. Google Scholar

  • Sadykov V., Mezentseva N., Alikina G., Bunina R., Pelipenko V. et al, Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance, Catal. Today, 2009, 146, 132-140. Google Scholar

  • Sadykov V., Sobyanin V., Mezentseva N., Alikina G., Vostrikov Z. et al., Transformation of CH4 and liquid fuels into syngas on monolithic catalysts, Fuel, 2010, 89, 1230-1240. Web of ScienceGoogle Scholar

  • Smirnova A.L., Sadykov V.A., Mezentseva N.V., Bunina R.V., Pelipenko V.V. et al., Design and testing of structured catalysts for internal reforming of CH4 in intermediate temperature solid oxide fuel cells (IT SOFC), ECS Transactions, 2011, 35, 2771-2780. Google Scholar

  • Sadykov V.A., Usoltsev V.V., Fedorova Yu.E., Sobyanin V.A., Kalinin P.V. et al., Design of medium–temperature solid oxide fuel cells on porous supports of deformation strengthened Ni–Al alloy, Russ. J. Electrochem., 2011, 47, 488-493. Web of ScienceGoogle Scholar

  • Smirnova A., Sadykov V., Mezentseva N., Usoltsev V., Smorygo O. et al., Metal-supported SOFC on compressed Ni-Al foam substrates, in: ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology FuelCell2010 (14-16 July 2010, Brooklyn, NY), ASME, New York, 2010, Vol. 2, 411-416. Google Scholar

  • Adler S.B., Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 2004, 104, 4791-4843. Google Scholar

  • Sadykov V., Mezentseva N., Usoltsev V., Smorygo O., Mikutski V. et al., Metal supported SOFC on the gradient permeable metal foam substrate, Adv. Mater. Res., 2010, 123–125, 1083-1086. Google Scholar

  • Smorygo O., Mikutski V., Marukovich A., Sadykov V., Usoltsev V. et al., Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes, IOP Conf. Ser.: Mater. Sci. Eng., 2011, 23, 012023. Google Scholar

  • Sadykov V., Mezentseva N., Alikina G., Bunina R., Pelipenko V. et al., Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance, in: Reddy B. (Ed.), Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, 2011, InTech, Rijeka, 909-946. Google Scholar

  • Sadykov V.A., Mezentseva N.V., Usoltsev V.V., Kharlamova T.S., Pavlova S.N. et al. Planar Thin Film Solid Oxide Fuel Cells for Intermediate Temperature Operation (IT SOFC): Design and Performance, in: Z. Liu (Ed.), Fuel Cell Performance, 2012, Nova Science Publishers, NY, 143-210. Google Scholar

  • Sadykov V., Mezentseva N., Bunina R., Pelipenko V., Bobrova L. et al., Anode Materials for IT SOFC Based on NIO/YSZ Doped with Complex Oxides and Promoted by Pt, Ru or Pd: Properties and Catalytic Activity in the Steam Reforming of CH4, in: Proc. 8th European SOFC Forum (30 June – 4 July, 2008, Lucerne, Switzerland), EFCF, Oberrohrdorf, A0526. Google Scholar

  • Xu J., Froment G.F., Methane steam reforming, methanation and water-gas shift. I. Intrinsic kinetics, AIChE J., 1989, 35, 88-96.Google Scholar

About the article


Received: 2013-03-19

Accepted: 2013-05-13

Published Online: 2013-05-24


Citation Information: Catalysis for Sustainable Energy, Volume 1, Pages 90–99, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2013-0005.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Comments (0)

Please log in or register to comment.
Log in